时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测
时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测
目录
- 时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果







基本介绍
1.MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测;
自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。自注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,自注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.运行环境为Matlab2023a及以上;
3.data为数据集,单变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测。
%% TCN-selfAttention时间序列预测,运行环境Matlab2023及以上
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');%% 数据分析
num_samples = length(result); % 样本个数
kim = 4; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测%% 划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 数据格式转换
pc_train{1, 1} = p_train;
pc_test {1, 1} = p_test ;
tc_train{1, 1} = t_train;
tc_test {1, 1} = t_test ;%% 设置网络参数
numFilters = 16; % 卷积核个数
filterSize = 3; % 卷积核大小
dropoutFactor = 0.05; % 空间丢失因子
numBlocks = 1; % 残差块个数
numFeatures = f_; % 特征个数%% 输入层结构
layer = sequenceInputLayer(numFeatures, Normalization = "rescale-symmetric", Name = "input");
参考资料
[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501
相关文章:
时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测
时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测 目录 时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现TCN-Attention自注意力机制结合时…...
上位机图像处理和嵌入式模块部署(h750 mcu vs f407)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 在目前工业控制上面,f103和f407是用的最多的两种stm32 mcu。前者频率低一点,功能少一点,一般用在低端的嵌入式设…...
Linux C语言:指针和指针变量
一、指针的作用 使程序简洁、紧凑、高效有效地表示复杂的数据结构动态分配内存能直接访问硬件能够方便的处理字符串得到多于一个的函数返回值 二、内存、地址和变量 1、内存地址 2、变量和地址 1)变量用来在程序中保存数据 比如: int k 58; //声明一个int变…...
Llama模型家族之Stanford NLP ReFT源代码探索 (二)Intervention Layers层
LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 (一) 基于 LlaMA 3 LangGraph 在windows本地部署大模型 (二) 基于 LlaMA 3 LangGraph 在windows本地部署大模型 (三) 基于 LlaMA…...
MATLAB神经网络---序列输入层sequenceInputLayer
序列输入层sequenceInputLayer 描述一: sequenceinputlayer是Matlab深度学习工具箱中的一个层,用于处理序列数据输入。它可以将输入数据转换为序列格式,并将其传递给下一层进行处理。该层通常用于处理文本、语音、时间序列等类型的数据。在使用该层时&…...
使用CSS、JavaScript、jQuery三种方式实现手风琴效果
手风琴效果有不少,王者荣耀官网(源网址 https://pvp.qq.com/raiders/ )有一处周免英雄,使用的就是手风琴效果,如图所示。 我试着用css、js、jQuery三种方式实现了这种效果,最终效果差不多,美中不…...
什么是无头浏览器以及其工作原理?
如果您对这个概念还不熟悉,那么使用无头网络浏览器的想法可能会让您感到不知所措。无头浏览器本质上与您熟悉的网络浏览器相同,但有一个关键区别:它们没有图形用户界面 (GUI)。这意味着没有按钮、选项卡、地址栏或视觉显示。 相反,…...
计算机网络 —— 应用层(DNS域名系统)
计算机网络 —— 应用层(DNS域名系统) 什么是DNS域名的层次结构域名分类 域名服务器的分类域名解析方式递归查询(Recursive Query)迭代查询(Iterative Query)域名的高速缓存 我们今天来看DNS域名系统 什么…...
Linux--MQTT简介
一、简介 MQTT ( Message Queuing Telemetry Transport,消息队列遥测传输), 是一种基于客户端服务端架构的发布/订阅模式的消息传输协议。 与 HTTP 协议一样, MQTT 协议也是应用层协议,工作在 TCP/IP 四…...
VMware Workerstation开启虚拟机后,产生乱码名称日志文件
问题情况 如下图所示,我的虚拟机版本是16.1.2版本,每次在启动虚拟机之后,D盘目录下都会产生一个如图下所示的乱码名称文件。同时,虚拟机文件目录也是杂乱不堪,没有按照一台虚拟机对应一个文件夹的形式存在。 问题处理…...
Unity射击游戏开发教程:(27)创建带有百分比的状态栏
创建带有弹药数和推进器百分比的状态栏 在本文中,我将介绍如何创建带有分数和百分比文本的常规状态栏。 由于 Ammo Bar 将成为 UI 的一部分,因此我们需要向 Canvas 添加一个空的 GameObject 并将其重命名为 AmmoBar。我们需要一个文本和两个图像对象,它们是 AmmoBar 的父级。…...
Linux内存从0到1学习笔记(8.16 SMMU详解)---更新中
写在前面 前面博客已经了解过。SMMU是IOMMU在ARM架构上的实现。主要为了解决虚拟化环境中,GuestOS无法直接将连续的物理地址分配给硬件的问题。对于Hypervisor/GuestOS的虚拟化系统来说,所有的VM都运行在Hypervisor上,每一个VM独立运行一个O…...
标准盒模型和怪异盒模型的区别
CSS盒模型: 内容区(content)内边距(padding)边框(border)外边距(margin) 分为标准盒模型和IE盒模型/怪异盒模型 为了正确设置元素在所有浏览器中的宽度和高度…...
【第8章】如何利用ControlNet生成“可控画面”?(配置要求/一键安装/快速上手/生成第一张图)ComfyUI基础入门教程
这节我们来讲AI绘画领域中一个很重要的概念:ControlNet,看下如何让生成的画面更可控。 🎅什么是ControlNet? Stable Diffusion中的ControlNet是一种神经网络结构,它允许将额外的条件输入添加到预训练的图像扩散模型中,通过这种方式,ControlNet可以控制图像生成过程,…...
[qt] qt程序打包以及docker镜像打包
目录 一 环境准备: 1.1 qt环境 1.2 linuxdeplouqt打包工具 二 qt包发布: 2.1 搜索链接库 2.2 应用程序APP打包 2.3 发布 三 docker镜像包发布 3.1 环境准备 3.2 镜像生产脚本 3.3 加载镜像并运行docker容器 四 补充 4.1 时间不同步问题解决 一 环境准备: qt环境l…...
电脑屏幕监控软件有哪些?2025年监控软件排行榜
电脑屏幕监控软件有哪些?2025年监控软件排行榜 虽然现在还是2024年,但是有一些被广泛讨论和推荐的电脑屏幕监控软件,它们将在2025年异军突起,成为行业的引领者。 1.安企神软件: 功能全面的电脑屏幕监控软件…...
音视频主要概念
文章目录 常用的一些概念主要概念1主要概念2I帧P帧B帧 常用视频压缩算法 小结 常用的一些概念 主要概念1 视频码率:kb/s,是指视频文件在单位时间内使用的数据流量,也叫码流率。码率越大,说明单位时间内取样率越大,数…...
AIGC全面介绍
AIGC(Artificial Intelligence and General Competitions)是一个专注于人工智能和综合能力竞赛的组织。AIGC的目标是促进人工智能和综合能力的发展,并为相关领域的学术研究和应用创新提供支持和平台。 AIGC主要致力于人工智能竞赛的组织、举…...
vscode中模糊搜索和替换
文章目录 调出搜索(快捷键)使用正则(快捷键)替换(快捷键)案例假设给定文本如下目标1:查找所有函数名目标2:替换所有函数名为hello目标3:给url增加查询字符串参数 调出搜索…...
人工智能入门学习教程分享
目录 1.首先安装python,官网地址:Download Python | Python.org,进入网址,点击Windows链接 2.下载完成之后,进行傻瓜式安装,如果不选安装路径,默认会安装到C:\Users\Administrator\AppData\Local\Programs\Python\Python38目录下。 3.配置python环境变量,即把python的…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
