当前位置: 首页 > news >正文

时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测

时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测

目录

    • 时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测;
自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。自注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,自注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.运行环境为Matlab2023a及以上;
3.data为数据集,单变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测
%%  TCN-selfAttention时间序列预测,运行环境Matlab2023及以上
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据格式转换
pc_train{1, 1} = p_train; 
pc_test {1, 1} = p_test ;
tc_train{1, 1} = t_train; 
tc_test {1, 1} = t_test ;%%  设置网络参数 
numFilters = 16;         % 卷积核个数
filterSize = 3;          % 卷积核大小
dropoutFactor = 0.05;    % 空间丢失因子
numBlocks = 1;           % 残差块个数
numFeatures = f_;         % 特征个数%%  输入层结构
layer = sequenceInputLayer(numFeatures, Normalization = "rescale-symmetric", Name = "input");

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测

时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测 目录 时序预测 | MATLAB实现TCN-Attention自注意力机制结合时间卷积神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现TCN-Attention自注意力机制结合时…...

上位机图像处理和嵌入式模块部署(h750 mcu vs f407)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 在目前工业控制上面,f103和f407是用的最多的两种stm32 mcu。前者频率低一点,功能少一点,一般用在低端的嵌入式设…...

Linux C语言:指针和指针变量

一、指针的作用 使程序简洁、紧凑、高效有效地表示复杂的数据结构动态分配内存能直接访问硬件能够方便的处理字符串得到多于一个的函数返回值 二、内存、地址和变量 1、内存地址 2、变量和地址 1)变量用来在程序中保存数据 比如: int k 58; //声明一个int变…...

Llama模型家族之Stanford NLP ReFT源代码探索 (二)Intervention Layers层

LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 (一) 基于 LlaMA 3 LangGraph 在windows本地部署大模型 (二) 基于 LlaMA 3 LangGraph 在windows本地部署大模型 (三) 基于 LlaMA…...

MATLAB神经网络---序列输入层sequenceInputLayer

序列输入层sequenceInputLayer 描述一: sequenceinputlayer是Matlab深度学习工具箱中的一个层,用于处理序列数据输入。它可以将输入数据转换为序列格式,并将其传递给下一层进行处理。该层通常用于处理文本、语音、时间序列等类型的数据。在使用该层时&…...

使用CSS、JavaScript、jQuery三种方式实现手风琴效果

手风琴效果有不少,王者荣耀官网(源网址 https://pvp.qq.com/raiders/ )有一处周免英雄,使用的就是手风琴效果,如图所示。 我试着用css、js、jQuery三种方式实现了这种效果,最终效果差不多,美中不…...

什么是无头浏览器以及其工作原理?

如果您对这个概念还不熟悉,那么使用无头网络浏览器的想法可能会让您感到不知所措。无头浏览器本质上与您熟悉的网络浏览器相同,但有一个关键区别:它们没有图形用户界面 (GUI)。这意味着没有按钮、选项卡、地址栏或视觉显示。 相反&#xff0c…...

计算机网络 —— 应用层(DNS域名系统)

计算机网络 —— 应用层(DNS域名系统) 什么是DNS域名的层次结构域名分类 域名服务器的分类域名解析方式递归查询(Recursive Query)迭代查询(Iterative Query)域名的高速缓存 我们今天来看DNS域名系统 什么…...

Linux--MQTT简介

一、简介 MQTT ( Message Queuing Telemetry Transport,消息队列遥测传输), 是一种基于客户端服务端架构的发布/订阅模式的消息传输协议。 与 HTTP 协议一样, MQTT 协议也是应用层协议,工作在 TCP/IP 四…...

VMware Workerstation开启虚拟机后,产生乱码名称日志文件

问题情况 如下图所示,我的虚拟机版本是16.1.2版本,每次在启动虚拟机之后,D盘目录下都会产生一个如图下所示的乱码名称文件。同时,虚拟机文件目录也是杂乱不堪,没有按照一台虚拟机对应一个文件夹的形式存在。 问题处理…...

Unity射击游戏开发教程:(27)创建带有百分比的状态栏

创建带有弹药数和推进器百分比的状态栏 在本文中,我将介绍如何创建带有分数和百分比文本的常规状态栏。 由于 Ammo Bar 将成为 UI 的一部分,因此我们需要向 Canvas 添加一个空的 GameObject 并将其重命名为 AmmoBar。我们需要一个文本和两个图像对象,它们是 AmmoBar 的父级。…...

Linux内存从0到1学习笔记(8.16 SMMU详解)---更新中

写在前面 前面博客已经了解过。SMMU是IOMMU在ARM架构上的实现。主要为了解决虚拟化环境中,GuestOS无法直接将连续的物理地址分配给硬件的问题。对于Hypervisor/GuestOS的虚拟化系统来说,所有的VM都运行在Hypervisor上,每一个VM独立运行一个O…...

标准盒模型和怪异盒模型的区别

CSS盒模型: 内容区(content)内边距(padding)边框(border)外边距(margin) 分为标准盒模型和IE盒模型/怪异盒模型 为了正确设置元素在所有浏览器中的宽度和高度&#xf…...

【第8章】如何利用ControlNet生成“可控画面”?(配置要求/一键安装/快速上手/生成第一张图)ComfyUI基础入门教程

这节我们来讲AI绘画领域中一个很重要的概念:ControlNet,看下如何让生成的画面更可控。 🎅什么是ControlNet? Stable Diffusion中的ControlNet是一种神经网络结构,它允许将额外的条件输入添加到预训练的图像扩散模型中,通过这种方式,ControlNet可以控制图像生成过程,…...

[qt] qt程序打包以及docker镜像打包

目录 一 环境准备: 1.1 qt环境 1.2 linuxdeplouqt打包工具 二 qt包发布: 2.1 搜索链接库 2.2 应用程序APP打包 2.3 发布 三 docker镜像包发布 3.1 环境准备 3.2 镜像生产脚本 3.3 加载镜像并运行docker容器 四 补充 4.1 时间不同步问题解决 一 环境准备: qt环境l…...

电脑屏幕监控软件有哪些?2025年监控软件排行榜

电脑屏幕监控软件有哪些?2025年监控软件排行榜 虽然现在还是2024年,但是有一些被广泛讨论和推荐的电脑屏幕监控软件,它们将在2025年异军突起,成为行业的引领者。 1.安企神软件: 功能全面的电脑屏幕监控软件&#xf…...

音视频主要概念

文章目录 常用的一些概念主要概念1主要概念2I帧P帧B帧 常用视频压缩算法 小结 常用的一些概念 主要概念1 视频码率:kb/s,是指视频文件在单位时间内使用的数据流量,也叫码流率。码率越大,说明单位时间内取样率越大,数…...

AIGC全面介绍

AIGC(Artificial Intelligence and General Competitions)是一个专注于人工智能和综合能力竞赛的组织。AIGC的目标是促进人工智能和综合能力的发展,并为相关领域的学术研究和应用创新提供支持和平台。 AIGC主要致力于人工智能竞赛的组织、举…...

vscode中模糊搜索和替换

文章目录 调出搜索(快捷键)使用正则(快捷键)替换(快捷键)案例假设给定文本如下目标1:查找所有函数名目标2:替换所有函数名为hello目标3:给url增加查询字符串参数 调出搜索…...

人工智能入门学习教程分享

目录 1.首先安装python,官网地址:Download Python | Python.org,进入网址,点击Windows链接 2.下载完成之后,进行傻瓜式安装,如果不选安装路径,默认会安装到C:\Users\Administrator\AppData\Local\Programs\Python\Python38目录下。 3.配置python环境变量,即把python的…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...

WebRTC调研

WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...