当前位置: 首页 > news >正文

大模型中的计算精度——FP32, FP16, bfp16之类的都是什么???

大模型中的计算精度——FP32, FP16, bfp16之类的都是什么???

  • 这些精度是用来干嘛的??
  • 混合精度 mixed precision training
    • 什么是混合精度?
    • 怎么转换呢?
  • 为什么大语言模型通常使用FP32精度训练
  • 量化
    • 与混合精度有啥区别?
    • 量化怎么用?
  • 参考博客:

这些精度是用来干嘛的??

省流:硬件不够,精度来凑。
举个例子:关于长度单位有各种各样的单位,高精度就是一个超级精细的测量长度的仪器,可以测量到非常小的单位。低精度就是类似我们手中的尺子,到毫米为止了,再往下就测量不到了。现在让你测量一根头发有多粗,用精密的仪器测量会比较麻烦,但很精确;用尺子就不会很准确,但很快就能得到结果。无论使用那种工具,总会得到一个结果的。

如果我们想要更高的精度,就需要更多的存储空间和计算资源,这可能会增加计算的复杂性和成本。所以精度是我们在使用计算机进行数值计算时必须考虑的一个重要因素。准确结果 or 节省计算资源?

在大模型的训练和推理中因为没有足够的硬件设施(mei qian),有些大模型就没办法享受到。因此就有了这种通过降低精度而加快模型训练速度、降低显存占用率的方法——混合精度

混合精度 mixed precision training

什么是混合精度?

这是一种加速深度学习训练的技术。其主要思想是在精度降低可忍受的范围内,使用较低精度的浮点数来表示神经网络中的权重和激活值,从而减少内存使用和计算开销,进而加速训练过程

FP32、FP16、BF16和FP8都是计算中使用的数字表示形式,特别是在浮点运算领域。这些格式主要通过它们使用的位数来区分,这影响了它们的精度、范围和内存要求。

在这里插入图片描述
详细的精度范围我就不说了,知道了也没啥用,了解每个精度用来干嘛的就行

精度应用性能
FP16深度学习、神经网络训练相对于FP32有更快的计算速度和更低的内存使用量
FP16深度学习、神经网络训练相对于FP32有更快的计算速度和更低的内存使用量
BF16混合精度训练、深度学习性能各异,但通常允许比FP16更快的训练和更宽的范围
FP16深度学习(DL)、神经网络训练相对于FP32有更快的计算速度和更低的内存使用量

怎么转换呢?

混合精度训练的流程如下:

  1. 将FP32的权重转换为FP16格式,然后进行前向计算,得到FP32的损失(loss)。
  2. 使用FP16计算梯度。
  3. 将梯度转换为FP32格式,并将其更新到权重上。

为什么大语言模型通常使用FP32精度训练

大型语言模型通常使用FP32(32位浮点)精度进行训练,因为其较高的数值精度可以带来更好的整体模型。以下是一些关键点:

  1. 较高的数值精度:FP32比如FP16(16位浮点)这样的低精度格式提供更高的数值精度。这种更高的精度可以在训练期间导致更准确的计算,从而产生更有效的模型。
  2. 稳定性:在像FP16这样的低精度格式中进行训练可能会引入数值稳定性问题。例如,梯度下溢或溢出的机会更高,优化器的计算精度较低,累加器超出数据类型的范围的风险更高。
  3. 兼容性:像PyTorch这样的深度学习框架带有内置的工具来处理FP16的限制,但即使有了这些安全检查,由于参数或梯度超出可用范围,大型训练工作常常失败。

然而,尽管有这些优势,FP32也带来了更大的内存和训练时间要求。为了缓解这些问题,经常使用混合精度训练。混合精度训练将一些训练操作放在FP16而不是FP32中。在FP16中进行的操作需要较少的内存,并且在现代GPU上的处理速度可以比FP32快达8倍。尽管精度较低,但大多数在FP16中训练的模型没有显示任何可测量的性能下降。

量化

与混合精度有啥区别?

省流:量化精度是整形的,不再是浮点数了。
这是通过整型数值表示浮点的计算方式,减少数字表示的位数来减小模型存储量和计算量的方法。因为精度可能会导致计算和存储的开销非常高,因此量化使用更短的整数表示权重和激活值,从而减少内存和计算开销

量化怎么用?

这里使用load_in_8bit来举例
使用load_in_8bit方法可以实现模型的量化。该方法可以将模型权重和激活值量化为8位整数,从而减少内存和计算开销。具体实现方法如下:

from transformers import AutoTokenizer, AutoModel 
model = AutoModel.from_pretrained("THUDM/chatglm3-6b",revision='v0.1.0',load_in_8bit=True,trust_remote_code=True,device_map="auto")

需要注意的是,使用load_in_8bit方法量化模型可能会导致模型精确度下降。另外,不是所有的模型都可以被量化,只有支持动态量化的模型才可以使用该方法进行量化。

参考博客:

GPT实战系列-Baichuan2等大模型的计算精度与量化

大模型(LLM)的量化技术Quantization原理学习

关于LLM你或许不知道的事情-为什么大语言模型的训练和推理要求比较高的精度,如FP32、FP16?浮点运算的精度概念详解//(转载)

GPT实战系列-Baichuan2等大模型的计算精度与量化

bf16 和fp16 ,fp32的区别以及相互转换逻辑

相关文章:

大模型中的计算精度——FP32, FP16, bfp16之类的都是什么???

大模型中的计算精度——FP32, FP16, bfp16之类的都是什么??? 这些精度是用来干嘛的??混合精度 mixed precision training什么是混合精度?怎么转换呢? 为什么大语言模型通常使用FP32精度训练量化…...

在矩池云使用GLM-4的详细指南(无感连GitHubHuggingFace)

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本,在多项测试中表现出超越已有同等规模开源模型的性能,它能兼顾多轮对话、网页浏览、代码执行、多语言、长文本推理等多种功能,性能更加强大。其多模态语言模型GLM-4V-9B在…...

大模型日报2024-06-15

大模型日报 2024-06-15 大模型资讯 新技术提升大型语言模型推理能力 摘要: 一种新技术使得像GPT-4这样的大型语言模型能够通过编写Python代码,更准确地解决数值或符号推理任务。 大型语言模型革命性提升蛋白质序列理解 摘要: 研究人员将蛋白质序列与自然语言进行类比…...

【YOLO系列】YOLOv1学习(PyTorch)原理加代码

论文网址:https://arxiv.org/pdf/1506.02640 训练集博客链接:目标检测实战篇1——数据集介绍(PASCAL VOC,MS COCO)-CSDN博客 代码文件:在我资源里,但是好像还在审核,大家可以先可以,如果没有的…...

Postman接口测试工具详解:揭秘API测试的终极利器

在现代软件开发中,API接口测试是确保应用程序质量和可靠性的重要环节。Postman,作为一款功能强大且用户友好的API测试工具,受到了广大开发者和测试人员的青睐。本文将详细解析Postman的功能和优势,带你领略这款工具的魅力。 一、…...

紫光展锐5G处理器T750__国产手机芯片5G方案

展锐T750核心板采用6nm EUV制程工艺,CPU架构采用了八核设计,其中包括两个主频为2.0GHz的Arm Cortex-A76性能核心和六个主频为1.8GHz的A55小核。这种组合使得T750具备卓越的处理能力,并能在节能的同时提供出色的性能表现。该核心模块还搭载了M…...

基于深度学习的红外船舶检测识别分类完整实现数据集8000+张

随着遥感技术的快速发展,包括无人机、卫星等,红外图像在船舶检测识别中的作用日益凸显。相对于可见光图像,红外图像具有在夜晚和恶劣天气条件下高效检测识别船舶的天然优势。近年来,深度学习作为一种强大的图像处理技术&#xff0…...

SpringCloud跨服务远程调用

随着项目的使用者越来越多,项目承担的压力也会越来越大,为了让我们的项目能服务更多的使用者,我们不得不需要把我们的单体项目拆分成多个微服务,就比如把一个商城系统拆分成用户系统,商品系统,订单系统&…...

postgres常用查询

一.字符串截取 left: 从左往右截取字符 right: 从右往左截取字符 如截取4个字符: SELECT left( column_name, 4 ) from table SELECT right( column_name, 4 ) from table 二.条件统计 COUNT(CASE WHEN column_name ‘value’ THEN 1 END) AS count_name 如截统计值1,值2的…...

JavaFX应用

JavaFX案例:集成进度条与后台任务 在这个示例中,我们将向JavaFX应用中集成一个进度条,用来展示一个模拟的后台任务的完成进度。这将涉及JavaFX的并发特性,特别是Task类和如何在UI线程安全地更新UI组件。 假设我们想要实现一个简…...

axios打通fastapi和vue,实现前后端分类项目开发

axios axios是一个前后端交互的工具,负责在前端代码,调用后端接口,将后端的数据请求到本地以后进行解析,然后传递给前端进行处理。 比如,我们用fastapi写了一个接口,这个接口返回了一条信息: …...

【最新鸿蒙应用开发】——ArkWeb1——arkts加载h5页面

1. Web组件概述 Web组件用于在应用程序中显示Web页面内容,为开发者提供页面加载、页面交互、页面调试等能力。 页面加载:Web组件提供基础的前端页面加载的能力,包括:加载网络页面、本地页面、html格式文本数据。 页面交互&#…...

【设计模式】结构型设计模式之 享元模式

文章目录 介绍关键概念 应用举例象棋游戏共享棋子对象文本编辑器中文字格式设计成享元模式 享元模式在 Java 中的应用享元模式在包装类缓存中的应用享元模式在 String 中的应用 对比享元模式和单例模式的区别享元模式与缓存的区别 总结优点缺点 介绍 享元模式,”享…...

嵌入式操作系统_5.存储管理

1.存储管理 存储管理是嵌入式操作系统的基本功能之一。其管理的对象是主存,也称内存。它的主要功能包括分配和回收主存空间、提高主存利用率、扩充主存、对主存信息实现有效保护。存储器管理的目的就是提供一个有价值的内存抽象,其目标包括:…...

HTML DOM 事件

HTML DOM 事件 HTML DOM(文档对象模型)事件是当网页中的某些操作发生时,浏览器会自动触发或通过脚本代码手动触发的动作。这些事件可以是对用户操作的响应,如点击按钮,也可以是浏览器自身的动作,如页面加载完成。理解和掌握DOM事件对于前端开发至关重要,因为它们是实现…...

有没有硅基生命?AGI在哪里?

摘要 随着科技的飞速发展,人工智能(AI)和生命科学的探索逐渐成为人们关注的焦点。其中,关于硅基生命的可能性与AGI(Artificial General Intelligence,即人工通用智能)的实现,更是引…...

HAL库开发--串口

知不足而奋进 望远山而前行 目录 文章目录 前言 学习目标 学习内容 开发流程 串口功能配置 串口功能开启 串口中断配置 串口参数配置 查询配置结果 发送功能测试 中断接收功能测试 printf配置 DMA收发 配置 DMA发送 DMA接收(方式1) DMA接收(方式2) 总结 前言…...

Web前端设计毕业论文:深度探索与未来展望

Web前端设计毕业论文:深度探索与未来展望 在数字化时代,Web前端设计作为互联网应用的重要组成部分,其重要性和复杂性日益凸显。本论文旨在深度探索Web前端设计的关键要素、发展趋势以及面临的挑战,为未来的研究和实践提供有价值的…...

JAVA 字节运算 取低5位 获取低位第一位

1、JAVA 取低5位 什么是取低5位 在计算机中,每个数字都是以二进制形式存储的。一个二进制数字可以由多个位组成,每一位都可以是 0 或者 1。取低5位即表示只取二进制数字的最后5位(从右向左数)。 取低5位的方法 在 JAVA 中&#…...

全网首发:教你如何直接用4090玩转最新开源的stablediffusion3.0

1.stablediffusion的概述: Stable Diffusion(简称SD)近期的动态确实不多,但最新的发展无疑令人瞩目。StableCascade、Playground V2.5和Stableforge虽然带来了一些更新,但它们在SD3面前似乎略显黯然。就在昨晚&#x…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...