决策树算法介绍:原理与案例实现
一、引言
决策树是一种常用于分类和回归任务的机器学习算法,因其易于理解和解释的特点,在数据分析和挖掘领域有着广泛应用。本文将介绍决策树算法的基本原理,并通过一个具体案例展示如何实现和应用该算法。
二、决策树算法原理
1. 决策树结构
决策树由节点和边组成,其中每个内部节点表示一个特征或属性,每个分支表示该特征的一个可能取值,而每个叶节点则表示一个决策结果(分类或数值)。决策树的构建过程即是递归地将数据集分割成更小的子集,直到满足某些停止条件。
2. 分裂标准
在构建决策树时,选择最优特征进行分裂是关键步骤。常用的分裂标准包括信息增益、基尼指数和方差减少:
- 信息增益:基于熵的概念,信息增益越大,表示通过该特征进行分裂后,数据集的不确定性减少得越多。
- 基尼指数:用于衡量数据集的不纯度,基尼指数越小,表示数据集中的实例越趋于同一类。
- 方差减少:用于回归任务,通过最小化分裂前后的方差来选择分裂特征。
3. 决策树生成算法
常用的决策树生成算法包括ID3、C4.5和CART:
- ID3(Iterative Dichotomiser 3):采用信息增益作为分裂标准,适用于分类任务。
- C4.5:改进了ID3算法,引入了信息增益率,并支持连续特征和缺失值处理。
- CART(Classification and Regression Tree):适用于分类和回归任务,使用基尼指数(分类)或方差减少(回归)作为分裂标准。
4. 剪枝
为了避免过拟合,决策树生成后通常需要进行剪枝。剪枝分为预剪枝和后剪枝:
- 预剪枝:在构建决策树时,通过限制树的深度或节点的最小样本数等条件提前停止分裂。
- 后剪枝:先构建完整的决策树,再通过剪枝策略移除一些节点,减少模型的复杂度。
三、决策树案例实现
下面通过一个具体案例展示如何使用决策树算法进行分类任务。
1. 数据集简介
我们使用经典的鸢尾花数据集(Iris Dataset),该数据集包含150个样本,每个样本有4个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和一个目标变量(鸢尾花的品种:Setosa、Versicolour、Virginica)。
2. 数据预处理
首先,加载数据集并进行必要的预处理,如处理缺失值、标准化特征等。
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 标准化特征
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
3. 模型训练与评估
使用决策树分类器进行模型训练,并评估其在测试集上的性能。
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report# 初始化决策树分类器
clf = DecisionTreeClassifier(random_state=42)# 训练模型
clf.fit(X_train, y_train)# 预测
y_pred = clf.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, target_names=iris.target_names)print(f'准确率: {accuracy:.2f}')
print('分类报告:\n', report)
4. 可视化决策树
为了更好地理解决策树模型,可以通过可视化的方式展示其结构。
from sklearn.tree import export_graphviz
import graphviz# 导出决策树
dot_data = export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("iris_decision_tree")
5. 结果分析
通过上述步骤,我们可以得到决策树模型的准确率和分类报告,并通过可视化决策树结构,进一步理解模型的决策过程。在实际应用中,根据不同数据集的特点,可以调整决策树的参数,如树的最大深度、最小样本数等,以优化模型性能。
四、总结
本文介绍了决策树算法的基本原理,并通过鸢尾花数据集的案例,展示了如何实现和应用该算法。决策树作为一种直观且高效的机器学习算法,适用于多种分类和回归任务。然而,为了提升模型的泛化能力,避免过拟合,通常需要结合剪枝策略或集成方法(如随机森林、梯度提升树)来应用。
相关文章:
决策树算法介绍:原理与案例实现
一、引言 决策树是一种常用于分类和回归任务的机器学习算法,因其易于理解和解释的特点,在数据分析和挖掘领域有着广泛应用。本文将介绍决策树算法的基本原理,并通过一个具体案例展示如何实现和应用该算法。 二、决策树算法原理 1. 决策树结…...
业务代表模式
业务代表模式 引言 在软件工程中,设计模式是解决常见问题的经典解决方案。它们为开发人员提供了一种方法,以优雅和可重用的方式处理软件开发中的挑战。业务代表模式(Business Delegate Pattern)是一种行为设计模式,它主要关注于将业务逻辑与表示层(如用户界面)分离,以…...
LeetCode 算法:反转链表 c++
原题链接🔗:反转链表 难度:简单⭐️ 题目 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 1: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1] 示例 2:…...
【多线程】Thread类及其基本用法
🥰🥰🥰来都来了,不妨点个关注叭! 👉博客主页:欢迎各位大佬!👈 文章目录 1. Java中多线程编程1.1 操作系统线程与Java线程1.2 简单使用多线程1.2.1 初步创建新线程代码1.2.2 理解每个…...
Springboot 整合 Flowable(一):使用 flowable-UI 绘制流程图
目录 一、Flowable简介 二、Flowable 与 Activiti 的区别 三、流程图的绘制(以员工请假流程图为例) 1、下载 flowable 的压缩包: 2、启动包中的 tomcat 3、登录页面 4、绘制结束,导出 bpmn20.xml文件 一、Flowable简介 Fl…...
课设--学生成绩管理系统(一)
欢迎来到 Papicatch的博客 文章目录 🍉技术核心 🍉引言 🍈标识 🍈背景 🍈项目概述 🍈 文档概述 🍉可行性分析的前提 🍈项目的要求 🍈项目的目标 🍈…...
thinkphp5模型的高级应用
ThinkPHP5 是一个基于 PHP 的轻量级框架,它提供了许多便利的功能来简化 Web 开发。在 ThinkPHP5 中,模型(Model)是 MVC(Model-View-Controller)架构中的重要组成部分,负责处理数据逻辑。以下是一…...
XML XSLT:技术与应用解析
XML XSLT:技术与应用解析 XML(可扩展标记语言)和XSLT(XML样式表转换语言)是现代信息技术中不可或缺的工具。本文将深入探讨XML和XSLT的概念、技术细节以及它们在实际应用中的作用。 XML简介 XML是一种用于存储和传输…...
嵌入式单片机中项目在线仿真工具分享
前段时间,无意间发现了一个不错的在线仿真工具(Wokwi),支持多种平台,支持市面上主流的开发板,比如:STM32、ESP32、Arduino、树莓派等。 还支持常见的传感器、显示器件(LCD、LED屏幕)等,还可以播放音乐、联网、逻辑分析仪等,关键还提供了很多实际项目的案例。 这款工…...
Unity动态添加聊天文本
1.创建一个滚动视图 2.调整滚动视图的位置并删掉这个 3.创建一个输入框和一个按钮 这里插一句一定要给content添加这个组件并设置单元格大小 4创建一个脚本并编写下面代码 using System.Collections; using System.Collections.Generic; using TMPro; using Unity.VisualScrip…...
力扣-2269. 找到一个数字的 K 美丽值
文章目录 力扣题目代码工程C实现python实现 力扣题目 一个整数 num 的 k 美丽值定义为 num 中符合以下条件的 子字符串 数目: 子字符串长度为 k 。 子字符串能整除 num 。 给你整数 num 和 k ,请你返回 num 的 k 美丽值。 注意: 允许有 前…...
一个在C#中集成Python的例子
一个在C#中集成Python的例子。在C#中可以执行Python脚本,在Python中也可以调用C#宿主中的功能(clr.AddReference(Business))。 文件说明 Debug为执行目录 Mgr.exe为执行文件 Py\init.py为python初始化脚本 Py\Lib.zip为python需要的模块&…...
基于RandLA-Net深度学习模型的激光点云语义分割
一、场景要素语义分割部分的文献阅读笔记 RandLA-Net是一种高效、轻量级的神经网络,其可直接逐点推理大规模点云的语义标签。RandLA-Net基于随机点采样获得了显著的计算和内存效率,并采用新的局部特征聚合模块有效地保留了几何细节,弥补了随机…...
C语言的结构体与联合体
引言 C语言提供了结构体和联合体两种聚合数据类型,使得程序员可以创建包括多个数据类型的复杂数据结构。结构体用于将不同类型的数据组合成一个单元,而联合体用于在同一存储空间中存储不同类型的数据。本篇文章将详细介绍C语言中的结构体和联合体&#x…...
React Hooks小记(三)_forwardRef
forwardRef 【写在前面】 1、ref 的作用是获取实例,但由于函数组件不存在实例,因此无法通过 ref 获取函数组件的实例引用,而 React.forwardRef 就是用来解决这个问题的。 2、React.forwardRef 会创建一个 React 组件,这个组…...
面试复习记录
六级终于结束了,之前背的八股几乎也忘得差不多了,今天开始继续准备秋招,以下是每天的安排,会按时更新,就当是一种对自己的督促,也欢迎小伙伴们一起来互相监督。 2024.6.16 力扣:sql基础题库50…...
块级元素与行内元素详解
在网页设计与开发中,元素根据其在页面布局中的表现可分为两大类:块级元素(Block-level Elements)和行内元素(Inline Elements)。理解它们的特性和使用规则对于构建结构清晰、布局合理的网页至关重要。 块级…...
Kotlin编程实践-【Java如何调用Kotlin中带默认值参数的函数】
问题 如果你有一个带有默认参数值的 Kotlin 函数,如何从 Java 调用它而无须为每个参数显式指定值? 方案 为函数添加注解JvmOverloads。 也就是为Java添加重载方法,这样Java调用Kotlin的方法时就不用传递全部的参数了。 示例 在 Kotlin …...
中国城市统计年鉴(1985-2023年)
数据年限:1985-2023 数据格式:pdf、excel 数据内容:共分四个部分 第一部分是全国城市行政区划,列有不同区域、不同级别的城市分布情况; 第二、三部分分别是地级以上城市统计资料和县级城市统计资料,具体包括…...
RestTemplate远程请求的艺术
1 简说 编程是一门艺术,追求优雅的代码就像追求优美的音乐。 很多有多年工作经验的开发者,在使用RestTemplate之前常常使用HttpClient,然而接触了RestTemplate之后,却愿意放弃多年相处的“老朋友”,转向RestTemplate。那么一定是RestTemplate有它的魅力,有它的艺术风范。…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
倒装芯片凸点成型工艺
UBM(Under Bump Metallization)与Bump(焊球)形成工艺流程。我们可以将整张流程图分为三大阶段来理解: 🔧 一、UBM(Under Bump Metallization)工艺流程(黄色区域ÿ…...
Linux基础开发工具——vim工具
文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...
