当前位置: 首页 > news >正文

R语言数据分析案例29-基于ARIMA模型的武汉市房价趋势与预测研究

一、选题背景

房地产行业对于国民经济和社会及居民的发展和生活具有很大的影响,而房价能够体现经济运转的好坏,因而房价的波动牵动着开发商和购房者的关注,城市房价预测是一个研究的热点问题,研究房价对民生问题具有重要意义。

本文首先介绍了房地产行业及房价的背景 ,并整理了国内外的相关文献。。。。。

(一)研究背景

房地产行业对于国民经济和社会及居民的发展和生活具有很大的影响,而房价能够体现经济运转的好坏。首先,房地产行业与大众的生活息息相关,比如房产买卖和房屋租赁等等,其发展直接关系到人们的居住条件。

(二)文献综述

国外有许多学者研究了房地产行业的问题。Hekman在1979年综合一些经济因素对房价进行了分析,结果表明经济因素对于房价有显著的影响;Clayton研究了基于波动的理性预期对于房地产价格的影响,然而研究结论与理想的结果并不符合;Normanm Liang对美国两百多个城市的房地产销售价格进行了研究,发现经济条件不同其波动规律不同,并且房价的变化速率的时间段不一样也会存在很大差异。。。。

二、方案论证(设计理念)

RIMA模型被称为自回归移动平均模型,通常当数据序列不是平稳序列时应用,之后通过差分、季节分解等一系列方法后将原本不平稳的序列变为平稳序列,之后利用平稳序列建模方法进行建模。

ARIMA (p ,d, q)模型的特征形式如下:

季节模型

ARIMA可以分为简单的季节模型和乘法季节模型。它是根据季节效应的提取的难易程度进行区分的。当季节效应提取较为容易时,就是简单季节模型,当季节效应提取较为困难时就是乘法季节模型。。。。

三、过程论述

本文所用数据来源于房价官网以及国家统计局官网。对于部分缺失值,采用平均值替代法。

数据集和代码

报告代码数据

数据的描述性统计如表2所示。

表 2 数据的描述性统计

data<-read.table("dataw.csv",header=TRUE,sep=",")
data
price=data$wuhan
summary(price)

Min.

1stQu.

Median

Mean

3rdQu.

Max.

price

10001 

15779 

16492 

15892

17141

18581

序列的时序图、自相关图及单根检验等可以用来检验序列的平稳性。

应用R作2016年1月-2022年5月武汉市房价的时序图如图1所示。

price<-ts(price,start=c(2016,1),frequency=12)
plot(price,main="2016年1月-2022年5月武汉市房价",xlab="年份",ylab="房价")

从时序图图1中可以清楚的看到该序列蕴涵曲线增长的长期趋势,为非平稳序列。

接下来进行自相关检验,2016年1月-2022年5月武汉市房价自相关图如图2所示。

 四、结果分析

 根据上面结果可以认为2016年1月到2022年5月武汉市房价序列为非平稳时间序列,不能直接构建ARIMA模型,需要进行差分处理。

#绘制差分后序列自相关图和偏自相关图
acf(price.dif)
pacf(price.dif)

 

武汉市房价二阶差分时序图和自相关图分别如图5和图6所示,观察到序列已经非常平稳,所有数据均在相同的高度轻微波动。

对二阶差分后的数据进行ADF平稳性检验,结果如表3所示。

表 3  延迟2期平稳性检验

检验形式

no drift no trend

with drift no trend

with drift and trend

Price

ADF统计量

-6.78

-6.74

-6.69

对应P值

0.01

0.01

0.01


#序列的白噪声检验
for(i in 1:2) print(Box.test(price.dif2,lag=6*i))

表 4  白噪声检验

滞后期数

卡方统计量

P值

Price 

滞后6期P值

29.972

3.979e-05

滞后12期P值

41.721

3.71e-05

按照上面自相关图和偏自相关图的内容,以及对武汉市房价数据序列进行了二次差分,并结合自动定阶的函数,计算得到模型应该采用ARIMA(1,2,2),拟合得到模型系数如图7所示。

#自动定阶
auto.arima(price.dif2)#模型拟合
price.fit<-arima(price,order=c(1,2,2))
price.fit

进一步观察残差图。

plot(price.fit$residuals,main = "price模型残差图",xlab = "日期",ylab="残差")

最后利用ARIMA(1,2,2)模型对武汉市的房价进行预测,预测6期,即未来六个月房价数据,得到的整体拟合和预测图如下图所示:

从图中可以看到武汉市房价在2022年5月后的六个月呈现出较为平稳的趋势。 

五、课程设计总结

本文首先介绍了研究房地产行业及房价的背景,并对国内外相关文献进行了整理。接着利用武汉市2016年1月-2022年五月的房价月度数据,基于时间序列模型,对武汉市房价的动态数据做了时序的分析,并且预测了武汉市六期的房价,并利用三次平滑指数法预测进行对比。。。。。

创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

相关文章:

R语言数据分析案例29-基于ARIMA模型的武汉市房价趋势与预测研究

一、选题背景 房地产行业对于国民经济和社会及居民的发展和生活具有很大的影响&#xff0c;而房价能够体现经济运转的好坏&#xff0c;因而房价的波动牵动着开发商和购房者的关注&#xff0c;城市房价预测是一个研究的热点问题&#xff0c;研究房价对民生问题具有重要意义。 …...

面试-NLP八股文

机器学习 交叉熵损失&#xff1a; L − ( y l o g ( y ^ ) ( 1 − y ) l o g ( 1 − ( y ^ ) ) L-(ylog(\hat{y}) (1-y)log(1-(\hat{y})) L−(ylog(y^​)(1−y)log(1−(y^​))均方误差&#xff1a; L 1 n ∑ i 1 n ( y i − y ^ i ) 2 L \frac{1}{n}\sum\limits_{i1}^{n}…...

数据仓库之离线数仓

离线数据仓库&#xff08;Offline Data Warehouse&#xff09;是一种以批处理方式为主的数据仓库系统&#xff0c;旨在收集、存储和分析大量历史数据。离线数据仓库通常用于定期&#xff08;如每日、每周、每月&#xff09;更新数据&#xff0c;以支持各种业务分析、报表生成和…...

Mybatis源码解析

MybatisAutoConfiguration或者MybatisPlusAutoConfiguration核心作用是初始化工厂类SqlSessionFactory&#xff0c;其中包含属性interceptors、MapperLocations、TypeAliasesPackage、TypeEnumsPackage、TypeHandlers等。 MybatisAutoConfiguration自动装配类是由依赖&#xf…...

前端学习CSS之神奇的块浮动

在盒子模型的基础上就可以对网页进行设计 不知道盒子模型的可以看前面关于盒子模型的内容 而普通的网页设计具有一定的原始规律,这个原始规律就是文档流 文档流 标签在网页二维平面内默认的一种排序方式,块级标签不管怎么设置都会占一行,而同一行不能放置两个块级标签 行级…...

【Java】内部类、枚举、泛型

目录 1.内部类1.1概述1.2分类1.3匿名内部类(重点) 2.枚举2.1一般枚举2.2抽象枚举2.3应用1&#xff1a;用枚举写单例2.4应用2&#xff1a;标识常量 3.泛型3.1泛型认识3.2泛型原理3.3泛型的定义泛型类泛型接口泛型方法 3.4泛型的注意事项 1.内部类 1.1概述 内部类&#xff1a;指…...

LabVIEW电子类实验虚拟仿真系统

开发了基于LabVIEW开发的电子类实验虚拟仿真实验系统。该系统通过图形化编程方式&#xff0c;实现了复杂电子实验操作的虚拟化&#xff0c;不仅提高了学生的操作熟练度和学习兴趣&#xff0c;而且通过智能评价模块提供即时反馈&#xff0c;促进教学和学习的互动。 项目背景 在…...

SVM支持向量机

SVM的由来和概念 间隔最大化是找最近的那个点的距离’ 之前我们学习的都是线性超平面,现在我们要将超平面变成圈 对于非线性问题升维来解决 对于下图很难处理,我们可以将棍子立起来,然后说不定red跑到左边了,green跑到右边了(可能增加了某种筛选条件导致两个豆子分离)(只是一种…...

【Unity】RPG2D龙城纷争(二)关卡、地块

更新日期&#xff1a;2024年6月12日。 项目源码&#xff1a;后续章节发布 索引 简介地块&#xff08;Block&#xff09;一、定义地块类二、地块类型三、地块渲染四、地块索引 关卡&#xff08;Level&#xff09;一、定义关卡类二、关卡基础属性三、地块集合四、关卡初始化五、关…...

mediamtx流媒体服务器测试

MediaMTX简介 在web页面中直接播放rtsp视频流&#xff0c;重点推荐&#xff1a;mediamtx&#xff0c;不仅仅是rtsp-CSDN博客 mediamtx github MediaMTX(以前的rtsp-simple-server)是一个现成的和零依赖的实时媒体服务器和媒体代理&#xff0c;允许发布&#xff0c;读取&…...

C# 循环

C# 循环 在编程中&#xff0c;循环是一种控制结构&#xff0c;它允许我们重复执行一段代码多次。C# 提供了几种循环机制&#xff0c;以适应不同的编程需求。本文将详细介绍 C# 中常用的几种循环类型&#xff0c;包括 for 循环、while 循环、do-while 循环和 foreach 循环&…...

PHP杂货铺家庭在线记账理财管理系统源码

家庭在线记帐理财系统&#xff0c;让你对自己的开支了如指掌&#xff0c;图形化界面操作更简单&#xff0c;非常适合家庭理财、记账&#xff0c;系统界面简洁优美&#xff0c;操作直观简单&#xff0c;非常容易上手。 安装说明&#xff1a; 1、上传到网站根目录 2、用phpMyad…...

机器学习中的神经网络重难点!纯干货(上篇)

. . . . . . . . .纯干货 . . . . . . 目录 前馈神经网络 基本原理 公式解释 一个示例 卷积神经网络 基本原理 公式解释 一个示例 循环神经网络 基本原理 公式解释 一个案例 长短时记忆网络 基本原理 公式解释 一个示例 自注意力模型 基本原理…...

[DDR4] DDR1 ~ DDR4 发展史导论

依公知及经验整理&#xff0c;原创保护&#xff0c;禁止转载。 专栏 《深入理解DDR4》 内存和硬盘是电脑的左膀右臂&#xff0c; 挑起存储的大梁。因为内存的存取速度超凡地快&#xff0c; 但内存上的数据掉电又会丢失&#xff0c;一直其中缓存的作用&#xff0c;就像是我们的工…...

享元和代理模式

文章目录 享元模式1.引出享元模式1.展示网站项目需求2.传统方案解决3.问题分析 2.享元模式1.基本介绍2.原理类图3.外部状态和内部状态4.类图5.代码实现1.AbsWebSite.java 抽象的网站2.ConcreteWebSite.java 具体的网站&#xff0c;type属性是内部状态3.WebSiteFactory.java 网站…...

[英语单词] ellipsize,动词化后缀 -ize

openvswitch manual里的一句话&#xff1a;里面有使用ellipsize&#xff0c;但是查字典是没有这个单词&#xff0c;这就是创造出来的动词。将单词ellipsis&#xff0c;加动词化后缀&#xff0c;-ize。 Often we ellipsize arguments not important to the discussion, e.g.: &…...

自然资源-测绘地信专业术语,值得收藏!

自然资源-测绘地信专业术语&#xff0c;值得收藏&#xff01; 1、1954年北京坐标系 1954年我国决定采用的国家大地坐标系&#xff0c;实质上是由原苏联普尔科沃为原点的1942年坐标系的延伸。 2、1956年黄海高程系统 根据青岛验潮站1950年一1956年的验潮资料计算确定的平均海面…...

如何在小程序中实现页面之间的返回

在小程序中实现页面之间的返回&#xff0c;通常有以下几种方法&#xff0c;这些方法各有特点&#xff0c;适用于不同的场景&#xff1a; 1. 使用wx.navigateBack方法 描述&#xff1a;wx.navigateBack是微信小程序中用于关闭当前页面&#xff0c;返回上一页面或多级页面的API…...

深入解析数据结构之B树:平衡树中的王者

在计算机科学中&#xff0c;数据结构是算法和程序设计的基础。而在众多数据结构中&#xff0c;B树作为一种平衡树&#xff0c;在数据库和文件系统中有着广泛应用。本文将详细介绍B树的概念、特点、操作、优缺点及其应用场景&#xff0c;帮助读者深入理解这一重要的数据结构。 …...

18. 第十八章 继承

18. 继承 和面向对象编程最常相关的语言特性就是继承(inheritance). 继承值得是根据一个现有的类型, 定义一个修改版本的新类的能力. 本章中我会使用几个类来表达扑克牌, 牌组以及扑克牌性, 用于展示继承特性.如果你不玩扑克, 可以在http://wikipedia.org/wiki/Poker里阅读相关…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...