01 Pytorch 基础
paddle不需要放数据到gpu!
区别:1.batch_norlization 不同
2.

1.数据处理
1.取一个数据,以及计算大小
(剩下的工作,取batch,pytorch会自动做好了)

2.模型相关
如何得到结果

3.模型训练/模型验证:

代码剖析
1.配置文件yaml (字典)
#参数配置config = {"train_path":'/kaggle/input/deepshare-playground/train_behaviour.csv',"test_path":'/kaggle/input/deepshare-playground/test_behaviour.csv',"debug_mode" : False,"epoch" : 20,"batch" : 2048,"lr" : 0.001,"device" : 0,
}
使用: config[ '名称' ]
train_df = pd.read_csv(config['train_path'])
if config['debug_mode']:train_df = train_df[:1000]
test_df = pd.read_csv(config['test_path'])
2.处理数据:定义DataSet
关键:len + getitem(获取单独的一个)
#Dataset构造
class BaseDataset(Dataset):def __init__(self,df):self.df = dfself.feature_name = ['user_id','item_id']#数据编码self.enc_data()def enc_data(self):#使用enc_dict对数据进行编码self.enc_df = copy.deepcopy(self.df)for col in self.feature_name:self.enc_df[col] = torch.Tensor(np.array(self.df[col])).long()def __getitem__(self, index):data = dict()for col in self.feature_name:data[col] = torch.Tensor([self.enc_df[col].iloc[index]]).long().squeeze(-1)if 'label' in self.enc_df.columns:data['label'] = torch.Tensor([self.enc_df['label'].iloc[index]]).squeeze(-1)return datadef __len__(self):return len(self.df)
3.模型定义
4.训练与验证
完成Train Pipeline/Valid Pipeline
4.1 拷贝数据->gpu
4.2前向传输
4.3
4.4 指标计算
相关文章:
01 Pytorch 基础
paddle不需要放数据到gpu! 区别:1.batch_norlization 不同 2. 1.数据处理 1.取一个数据,以及计算大小 (剩下的工作,取batch,pytorch会自动做好了) 2.模型相关 如何得到结果 3.模型训练/模型…...
STL——set、map、multiset、multimap的介绍及使用
文章目录 关联式容器键值对树形结构与哈希结构setset的介绍set的使用set的模板参数列表set的构造set的使用set的迭代器使用演示 multisetmultiset演示 mapmap的定义方式map的插入map的查找map的[ ]运算符重载map的迭代器遍历multimapmultimap的介绍multimap的使用 在OJ中的使用…...
使用C语言,写一个类似Linux中执行cat命令的类似功能
一、详细的代码案例 #include <stdio.h> #include <stdlib.h> #include <string.h>// 函数声明 void cat_file(const char *filename);int main(int argc, char *argv[]) {if (argc < 2) {fprintf(stderr, "Usage: %s filename1 [filename2 ...]\n&…...
【Android】Android系统性学习——Android系统架构
前言 部分内容参考《Android进阶解密》 – 刘望舒 1. Android版本 官方链接:https://developer.android.com/studio/releases/platforms 里面有各个版本的官方文档,有些新功能的用法在这里面。 现在做安卓11,有时候需要向下兼容 2. AOSP …...
鸿蒙应用开发
学习视频: 00.课程介绍_哔哩哔哩_bilibili 官网:开发者文档中心 | 华为开发者联盟 (huawei.com) 开发工具 :DevEcoStudio , 类似Jetbrains 全家桶 ArkTS开发语言 :(基于TS,集成了前端语言…...
索引失效有效的11种情况
1全职匹配我最爱 是指 where 条件里 都是 ,不是范围(比如>,<),不是 不等于,不是 is not null,然后 这几个字段 建立了联合索引 ,而且符合最左原则。 那么就要比 只建…...
字符数组基础知识及题目
死识。。。 字符该如何存储呢?这一点我们在以前就接触过了。用char来存储。 如何输入一个单词呢? char a[10002]; scanf("%s",a); 就不用地址符了。 如何输入句子呢? char a[100002]; gets(a); gets是读入句子的,…...
一个简单的玩具机器人代码
编写一个玩具机器人脚本通常取决于机器人的硬件、接口和具体功能。然而,由于我们不能直接控制一个真实的硬件机器人,所以只是写一个模拟的C语言脚本示例,该脚本描述了一个简单的玩具机器人可能执行的一些基本操作。 假设我们的“玩具机器人”…...
设计模式-装饰器模式Decorator(结构型)
装饰器模式(Decorator) 装饰器模式是一种结构模式,通过装饰器模式可以在不改变原有类结构的情况下向一个新对象添加新功能,是现有类的包装。 图解 角色 抽象组件:定义组件的抽象方法具体组件:实现组件的抽象方法抽象装饰器&…...
RK3588开发板中使用Qt对zip文件进行解压
操作步骤: 下载源码quazip-0.7.3.zip ,在网上找找下载地址上传源码进行解压,然后使用命令 cd quazip-0.7.3 qmake make主要用的是quazip-0.7.3/quazip这个里面的源码,然后把源码加入到自己创建的qt项目pro中,导入方式…...
三、网络服务协议
目录 一、FTP:文件传输协议 二、Telnet:远程登录协议 三、AAA认证 四、DHCP 五、DNS 六、PPP协议 七、ISIS协议 一、FTP:文件传输协议 C/S架构,现多用于企业内部的资料共享和网络设备的文件传输,企业内部搭建一…...
C++初学者指南第一步---1. C++开发环境设置
C初学者指南第一步—1. C开发环境设置 目录 C初学者指南第一步---1. C开发环境设置1.1 工具1.1.1 代码编辑器和IDE1.1.2 Windows1.1.3 命令行界面 1.2 编译器1.2.1 gcc/g (支持Linux/Windows/MacOSX)1.2.2 clang/clang (支持Linux/Windows/MacOS)1.2.3 Microsoft Visual Studio…...
二维数组与指针【C语言】
二维数组与指针 一维数组一维数组与指针二维数组二维数组与指针总结补充判断以下方式是否正确打印二维数组一维数组 int arr[] = {11, 22, 33, 44};arr:首地址(第一个元素的地址) 一维数组与指针 int arr[] = {11, 22, 33, 44};因为,arr表示的是首地址,等价于 int* p =…...
解决linux下安装apex库报错:ModuleNotFoundError: No module named ‘packaging‘
使用如下命令安装apex: git clone https://github.com/NVIDIA/apex cd apex pip install -v --disable-pip-version-check --no-cache-dir --global-option"--cpp_ext" --global-option"--cuda_ext" ./ 报错: Running command py…...
React基础教程(07):条件渲染
1 条件渲染 使用条件渲染,结合TodoList案例,进行完善,实现以下功能: 当列表中的数据为空的时候,现实提示信息暂无待办事项当列表中存在数据的时候,提示信息消失 这里介绍三种实现方式。 注意这里的Empty是…...
回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测
回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测 目录 回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限…...
操作系统——信号
将信号分为以上四个阶段 1.信号注册:是针对信号处理方式的规定,进程收到信号时有三种处理方式:默认动作,忽略,自定义动作。如果不是自定义动作,这一步可以忽略。这个步骤要使用到signal/sigaction接口 2.…...
力扣1482.制作m束花所需的最少时间
力扣1482.制作m束花所需的最少时间 二分答案 check的时候 用一个bool数组判断是否开花找连续的k朵花 const int N 1e510;int st[N];class Solution {public:int minDays(vector<int>& bloomDay, int m, int k) {int n bloomDay.size();if(n < (long long)m*…...
解决 Linux 和 Java 1.8 中上传中文名称图片报错问题
在 Linux 系统和 Java 1.8 中,当尝试上传含有中文名称的图片时,可能会遇到以下错误提示: Caused by: java.nio.file.InvalidPathException: Malformed input or input contains unmappable characters: /home/uploadPath/2024/06/12/扣子蝴蝶…...
cocos开发的时候 wx.onShow在vscode里面显示红色
这个函数是在微信小游戏平台才会用到。 cocos识别不到wx这个变量。 可以改成下面的写法。 只要在变量前面加一个globalThis.就能识别这个变量了。也不报错了。 搞死强迫症了。orz 欢迎大家来玩我的微信小游戏。多多提意见啊。...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
GAN模式奔溃的探讨论文综述(一)
简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
深度解析云存储:概念、架构与应用实践
在数据爆炸式增长的时代,传统本地存储因容量限制、管理复杂等问题,已难以满足企业和个人的需求。云存储凭借灵活扩展、便捷访问等特性,成为数据存储领域的主流解决方案。从个人照片备份到企业核心数据管理,云存储正重塑数据存储与…...
