当前位置: 首页 > news >正文

01 Pytorch 基础

paddle不需要放数据到gpu!

区别:1.batch_norlization 不同

            2. 

1.数据处理

1.取一个数据,以及计算大小

        (剩下的工作,取batch,pytorch会自动做好了)

2.模型相关 

如何得到结果

3.模型训练/模型验证: 

代码剖析 

1.配置文件yaml (字典)
#参数配置config = {"train_path":'/kaggle/input/deepshare-playground/train_behaviour.csv',"test_path":'/kaggle/input/deepshare-playground/test_behaviour.csv',"debug_mode" : False,"epoch" : 20,"batch" : 2048,"lr" : 0.001,"device" : 0,
}

使用: config[ '名称' ]

train_df = pd.read_csv(config['train_path'])
if config['debug_mode']:train_df = train_df[:1000]
test_df = pd.read_csv(config['test_path'])
 2.处理数据:定义DataSet

关键:len + getitem(获取单独的一个)

#Dataset构造
class BaseDataset(Dataset):def __init__(self,df):self.df = dfself.feature_name = ['user_id','item_id']#数据编码self.enc_data()def enc_data(self):#使用enc_dict对数据进行编码self.enc_df = copy.deepcopy(self.df)for col in self.feature_name:self.enc_df[col] = torch.Tensor(np.array(self.df[col])).long()def __getitem__(self, index):data = dict()for col in self.feature_name:data[col] = torch.Tensor([self.enc_df[col].iloc[index]]).long().squeeze(-1)if 'label' in self.enc_df.columns:data['label'] = torch.Tensor([self.enc_df['label'].iloc[index]]).squeeze(-1)return datadef __len__(self):return len(self.df)
3.模型定义
4.训练与验证

完成Train Pipeline/Valid Pipeline

 4.1 拷贝数据->gpu

4.2前向传输

4.3

4.4 指标计算

相关文章:

01 Pytorch 基础

paddle不需要放数据到gpu! 区别:1.batch_norlization 不同 2. 1.数据处理 1.取一个数据,以及计算大小 (剩下的工作,取batch,pytorch会自动做好了) 2.模型相关 如何得到结果 3.模型训练/模型…...

STL——set、map、multiset、multimap的介绍及使用

文章目录 关联式容器键值对树形结构与哈希结构setset的介绍set的使用set的模板参数列表set的构造set的使用set的迭代器使用演示 multisetmultiset演示 mapmap的定义方式map的插入map的查找map的[ ]运算符重载map的迭代器遍历multimapmultimap的介绍multimap的使用 在OJ中的使用…...

使用C语言,写一个类似Linux中执行cat命令的类似功能

一、详细的代码案例 #include <stdio.h> #include <stdlib.h> #include <string.h>// 函数声明 void cat_file(const char *filename);int main(int argc, char *argv[]) {if (argc < 2) {fprintf(stderr, "Usage: %s filename1 [filename2 ...]\n&…...

【Android】Android系统性学习——Android系统架构

前言 部分内容参考《Android进阶解密》 – 刘望舒 1. Android版本 官方链接&#xff1a;https://developer.android.com/studio/releases/platforms 里面有各个版本的官方文档&#xff0c;有些新功能的用法在这里面。 现在做安卓11&#xff0c;有时候需要向下兼容 2. AOSP …...

鸿蒙应用开发

学习视频&#xff1a; 00.课程介绍_哔哩哔哩_bilibili 官网&#xff1a;开发者文档中心 | 华为开发者联盟 (huawei.com) 开发工具 &#xff1a;DevEcoStudio &#xff0c; 类似Jetbrains 全家桶 ArkTS开发语言 &#xff1a;&#xff08;基于TS,集成了前端语言&#xf…...

索引失效有效的11种情况

1全职匹配我最爱 是指 where 条件里 都是 &#xff0c;不是范围&#xff08;比如&#xff1e;,&#xff1c;&#xff09;&#xff0c;不是 不等于&#xff0c;不是 is not null&#xff0c;然后 这几个字段 建立了联合索引 &#xff0c;而且符合最左原则。 那么就要比 只建…...

字符数组基础知识及题目

死识。。。 字符该如何存储呢&#xff1f;这一点我们在以前就接触过了。用char来存储。 如何输入一个单词呢&#xff1f; char a[10002]; scanf("%s",a); 就不用地址符了。 如何输入句子呢&#xff1f; char a[100002]; gets(a); gets是读入句子的&#xff0c…...

一个简单的玩具机器人代码

编写一个玩具机器人脚本通常取决于机器人的硬件、接口和具体功能。然而&#xff0c;由于我们不能直接控制一个真实的硬件机器人&#xff0c;所以只是写一个模拟的C语言脚本示例&#xff0c;该脚本描述了一个简单的玩具机器人可能执行的一些基本操作。 假设我们的“玩具机器人”…...

设计模式-装饰器模式Decorator(结构型)

装饰器模式(Decorator) 装饰器模式是一种结构模式&#xff0c;通过装饰器模式可以在不改变原有类结构的情况下向一个新对象添加新功能&#xff0c;是现有类的包装。 图解 角色 抽象组件&#xff1a;定义组件的抽象方法具体组件&#xff1a;实现组件的抽象方法抽象装饰器&…...

RK3588开发板中使用Qt对zip文件进行解压

操作步骤&#xff1a; 下载源码quazip-0.7.3.zip &#xff0c;在网上找找下载地址上传源码进行解压&#xff0c;然后使用命令 cd quazip-0.7.3 qmake make主要用的是quazip-0.7.3/quazip这个里面的源码&#xff0c;然后把源码加入到自己创建的qt项目pro中&#xff0c;导入方式…...

三、网络服务协议

目录 一、FTP&#xff1a;文件传输协议 二、Telnet&#xff1a;远程登录协议 三、AAA认证 四、DHCP 五、DNS 六、PPP协议 七、ISIS协议 一、FTP&#xff1a;文件传输协议 C/S架构&#xff0c;现多用于企业内部的资料共享和网络设备的文件传输&#xff0c;企业内部搭建一…...

C++初学者指南第一步---1. C++开发环境设置

C初学者指南第一步—1. C开发环境设置 目录 C初学者指南第一步---1. C开发环境设置1.1 工具1.1.1 代码编辑器和IDE1.1.2 Windows1.1.3 命令行界面 1.2 编译器1.2.1 gcc/g (支持Linux/Windows/MacOSX)1.2.2 clang/clang (支持Linux/Windows/MacOS)1.2.3 Microsoft Visual Studio…...

二维数组与指针【C语言】

二维数组与指针 一维数组一维数组与指针二维数组二维数组与指针总结补充判断以下方式是否正确打印二维数组一维数组 int arr[] = {11, 22, 33, 44};arr:首地址(第一个元素的地址) 一维数组与指针 int arr[] = {11, 22, 33, 44};因为,arr表示的是首地址,等价于 int* p =…...

解决linux下安装apex库报错:ModuleNotFoundError: No module named ‘packaging‘

使用如下命令安装apex&#xff1a; git clone https://github.com/NVIDIA/apex cd apex pip install -v --disable-pip-version-check --no-cache-dir --global-option"--cpp_ext" --global-option"--cuda_ext" ./ 报错&#xff1a; Running command py…...

React基础教程(07):条件渲染

1 条件渲染 使用条件渲染&#xff0c;结合TodoList案例&#xff0c;进行完善&#xff0c;实现以下功能&#xff1a; 当列表中的数据为空的时候&#xff0c;现实提示信息暂无待办事项当列表中存在数据的时候&#xff0c;提示信息消失 这里介绍三种实现方式。 注意这里的Empty是…...

回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测

回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测 目录 回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限…...

操作系统——信号

将信号分为以上四个阶段 1.信号注册&#xff1a;是针对信号处理方式的规定&#xff0c;进程收到信号时有三种处理方式&#xff1a;默认动作&#xff0c;忽略&#xff0c;自定义动作。如果不是自定义动作&#xff0c;这一步可以忽略。这个步骤要使用到signal/sigaction接口 2.…...

力扣1482.制作m束花所需的最少时间

力扣1482.制作m束花所需的最少时间 二分答案 check的时候 用一个bool数组判断是否开花找连续的k朵花 const int N 1e510;int st[N];class Solution {public:int minDays(vector<int>& bloomDay, int m, int k) {int n bloomDay.size();if(n < (long long)m*…...

解决 Linux 和 Java 1.8 中上传中文名称图片报错问题

在 Linux 系统和 Java 1.8 中&#xff0c;当尝试上传含有中文名称的图片时&#xff0c;可能会遇到以下错误提示&#xff1a; Caused by: java.nio.file.InvalidPathException: Malformed input or input contains unmappable characters: /home/uploadPath/2024/06/12/扣子蝴蝶…...

cocos开发的时候 wx.onShow在vscode里面显示红色

这个函数是在微信小游戏平台才会用到。 cocos识别不到wx这个变量。 可以改成下面的写法。 只要在变量前面加一个globalThis.就能识别这个变量了。也不报错了。 搞死强迫症了。orz 欢迎大家来玩我的微信小游戏。多多提意见啊。...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...