PyTorch 张量数据类型
-
【数据类型】Python 与 PyTorch 常见数据类型对应:

用a.type()获取数据类型,用isinstance(a, 目标类型)进行类型合法化检测>>> import torch >>> a = torch.randn(2,3) >>> a tensor([[-1.7818, -0.2472, -2.0684],[ 0.0117, 1.4698, -0.9359]]) >>> a.type() ## 获取数据类型 'torch.FloatTensor' >>> isinstance(a, torch.FloatTensor) ## 类型合法化检测 True >>> -
【什么是张量】标量与张量:用
a.dim(),a.shape或者a.size()查看 dim 为 0 是标量,否则是张量>>> import torch >>> >>> a = torch.tensor(1) >>> a tensor(1) >>> a.dim() >>> 0 ## 标量>>> a = torch.Tensor([1]) >>> a tensor([1.]) >>> a.dim() >>> 1 ## 张量 -
【生成张量】常见方法如下:
- 常见随机方法:
torch.randn(shape),torch.rand(shape),torch.randint(min, max, shape),torch.rand_like(a),torch.normal(mean, std)… 具体示例如下 - Dim 1 / rank 1: 以 size 2 为例
>>> a = torch.randn(2) ## 随机, >>> a: tensor([1.4785, 0.6089])>>> a = torch.Tensor(2) ## 接收维度, unintialized 不推荐 >>> a: tensor([5.4086e+26, 4.5907e-41]) >>> a = torch.Tensor([1,2]) ## 同 torch.tensor([1,2]) 接收具体数据 >>> a: tensor([1, 2])>>> a = torch.from_numpy(np_data) ## 数据维持不变,类型一一对应>>> a = torch.full([2],7) ## 全部填充为一样的值 >>> a: tensor([7, 7])>>> a = torch.arange(0,10) ## arange >>> a: tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>> a = torch.linspace(0,10, steps=4) ## >>> a: tensor([ 0.0000, 3.3333, 6.6667, 10.0000]) >>> a = torch.logspace(0,10, steps=4) >>> a: tensor([1.0000e+00, 2.1544e+03, 4.6416e+06, 1.0000e+10]) - Dim 2 / rank 2: 以 size [2,3] 为例
…>>> a = torch.randn(2, 3) ## 随机 >>> a: tensor([[ 2.0631, -1.7011, 0.6375],[-1.2104, -1.3341, -0.8187]])>>> a = torch.Tensor(2, 3) ## 接收维度, unintialized 不推荐 >>> a: tensor([[-0.2438, -0.9554, -0.4694],[ 0.8636, 1.6497, -0.8862]]) >>> a = torch.Tensor([[1,2,3],[4,5,6]]) ## 同 torch.tensor([[1,2,3],[4,5,6]]) 接收具体数据 >>> a: tensor([[1., 2., 3.],[4., 5., 6.]])>>> a = torch.from_numpy(np_data) ## 数据维持不变,类型一一对应>>> a = torch.full([2,3],7) ## 全部填充为一样的值 >>> a: tensor([[7, 7, 7],[7, 7, 7]])
- 常见随机方法:
- B站视频参考资料
相关文章:
PyTorch 张量数据类型
【数据类型】Python 与 PyTorch 常见数据类型对应: 用 a.type() 获取数据类型,用 isinstance(a, 目标类型) 进行类型合法化检测 >>> import torch >>> a torch.randn(2,3) >>> a tensor([[-1.7818, -0.2472, -2.0684],[ 0.…...
奇思妙想-可以通过图片闻见味道的设计
奇思妙想-可以通过图片闻见味道的设计 偷闲半日享清闲,炭火烧烤乐无边。肉串飘香引客至,笑语欢声绕云间。人生难得几回醉,且把烦恼抛九天。今宵共饮开怀酒,改日再战新篇章。周四的傍晚,难得的闲暇时光让我与几位挚友相…...
装饰者模式(设计模式)
装饰模式就是对一个类进行装饰,增强其方法行为,在装饰模式中,作为原来的这个类使用者还不应该感受到装饰前与装饰后有什么不同,否则就破坏了原有类的结构了,所以装饰器模式要做到对被装饰类的使用者透明,这…...
ADB调试命令大全
目录 前言命令大全1.显示当前运行的全部模拟器:adb devices2.启动ADB: adb start-server3.停止ADB: adb kill-server4.安装应用程序: adb install -r [apk文件]5.卸载应用程序: adb uninstall [packagename]6.将手机设备中的文件copy到本地计…...
查看npm版本异常,更新nvm版本解决问题
首先说说遇见的问题,基本上把nvm,npm的坑都排了一遍 nvm版本导致npm install报错 Unexpected token ‘.‘install和查看node版本都正确,结果查看npm版本时候报错 首先就是降低node版本… 可以说基本没用,如果要降低版本的话&…...
计算机行业
计算机行业环境分析 2022.01.12 计算机行业环境分析 计算机专业就业前景 随着科技的进步和信息事业的发展,尤其是计算机技术的发展与网络应用的逐渐普及。计算机已成为人们工作和生活中不可缺少的东西。IT行业迅猛发展,就业工作岗位也比比皆是。在最近…...
各种机器学习算法的应用场景分别是什么(比如朴素贝叶斯、决策树、K 近邻、SVM、逻辑回归最大熵模型)?
2023简直被人工智能相关话题席卷的一年。关于机器学习算法的热度,也再次飙升,网络上一些分享已经比较老了。那么今天借着查询和学习的机会,我也来浅浅分享下目前各种机器学习算法及其应用场景。 为了方便非专业的朋友阅读,我会从算…...
SQLite JDBC驱动程序
SQLite JDBC驱动程序下载地址: 下载地址...
Postgre 调优工具pgBadger部署
一,简介: pgBadger(日志分析器)类似于oracle的AWR报告(基于1小时,一天,一周,一月的报告),以图形化的方式帮助DBA更方便的找到隐含问题。 pgbadger是为了提高…...
【云原生】Kubernetes----Helm包管理器
目录 引言 一、Helm概述 1.Helm价值概述 2.Helm的基本概念 3.Helm名词介绍 二、安装Helm 1.下载二进制包 2.部署Helm环境 3.添加补全信息 三、使用Helm部署服务 1.创建chart 2.查看文件信息 3.安装chart 4.卸载chart 5.自定义chart服务部署 6.版本升级 7.版本…...
Bootstrap 5 进度条
Bootstrap 5 进度条 引言 Bootstrap 5 是目前最流行的前端框架之一,它提供了一套丰富的组件和工具,帮助开发者快速构建响应式、移动设备优先的网页。在本文中,我们将重点探讨 Bootstrap 5 中的进度条组件,包括其基本用法、定制选…...
MySQL查询数据库中所有表名表结构及注释以及生成数据库文档
MySQL查询数据库中所有表名表结构及注释 生成数据库文档在后面!!! select t.TABLE_COMMENT -- 数据表注释 , c.TABLE_NAME -- 表名称 , c.COLUMN_COMMENT -- 数据项 , c.COLUMN_NAME -- 英文名称 , -- 字段描述 , upper(c.DATA_TYPE) as …...
Redis缓存穿透、缓存雪崩和缓存击穿的解决方案
Redis缓存穿透、缓存雪崩和缓存击穿的解决方案 引言 Redis作为当前非常流行的内存数据结构存储系统,以其高性能和灵活性被广泛应用于缓存、消息队列、排行榜等多种场景。然而,在实际使用过程中,可能会遇到缓存穿透、缓存雪崩和缓存击穿等问…...
如何解决javadoc一直找不到路径的问题?
目录 一、什么是javadoc二、javadoc为什么会找不到路径三、如何解决javadoc一直找不到路径的问题 一、什么是javadoc Javadoc是一种用于生成Java源代码文档的工具,它可以帮助开发者生成易于阅读和理解的文档。Javadoc通过解析Java源代码中的注释,提取其…...
redis 笔记2之哨兵
文章目录 一、哨兵1.1 简介1.2 实操1.2.1 sentinel.conf1.2.2 问题1.2.3 哨兵执行流程和选举原理1.2.4 使用建议 一、哨兵 1.1 简介 上篇说了复制,有个缺点就是主机宕机之后,从机只会原地待命,并不能升级为主机,这就不能保证对外…...
LVS+Keepalived NGINX+Keepalived 高可用群集实战部署
Keepalived及其工作原理 Keepalived 是一个基于VRRP协议来实现的LVS服务高可用方案,可以解决静态路由出现的单点故障问题。 VRRP协议(虚拟路由冗余协议) 是针对路由器的一种备份解决方案由多台路由器组成一个热备组,通过共用的…...
Mybatis做批量操作
动态标签foreach,做过批量操作,但是foreach只能处理记录数不多的批量操作,数据量大了后,先不说效率,能不能成功操作都是问题,所以这里讲一讲Mybatis正确的批量操作方法: 在获取opensession对象…...
Python | 中心极限定理介绍及实现
统计学是数据科学项目的重要组成部分。每当我们想从数据集的样本中对数据集的总体进行任何推断,从数据集中收集信息,或者对数据集的参数进行任何假设时,我们都会使用统计工具。 中心极限定理 定义:中心极限定理,通俗…...
探索Napier:Kotlin Multiplatform的日志记录库
探索Napier:Kotlin Multiplatform的日志记录库 在现代软件开发中,日志记录是不可或缺的部分,它帮助开发者追踪应用的行为和调试问题。对于Kotlin Multiplatform项目而言,能够在多个平台上统一日志记录的方法显得尤为重要。Napier…...
MySQL基础——SQL语句
目录 1.SQL通用语法 2.SQL分类 3 DDL 3.1数据库操作 3.1.1查询 3.1.2创建 3.1.3删除 3.1.4使用 3.2表操作 3.2.1查询 3.2.2创建 3.2.3数据类型 3.2.4表修改(alter打头) 3.2.5表删除(drop/truncate打头) 3.3 DDL总结…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
