MySQL(5)
聚合函数
GROUP BY 的使用
需求:查询各个部门的平均工资,最高工资
SELECT department_id,AVG(salary),SUM(salary)
FROM employees
GROUP BY department_id;
需求:查询各个job_id的平均工资
SELECT job_id,AVG(salary)
FROM employees
GROUP BY job_id;
需求:查询各个department_id,job_id的平均工资
SELECT department_id,job_id,AVG(salary)
FROM employees
GROUP BY department_id,job_id;
GROUP BY 声明在FROM后面、WHERE后面,ORDER BY 前面、LIMIT前面
需求:查询各个部门的平均工资,按照平均工资升序排列
SELECT department_id,AVG(salary) avg_salFROM employeesGROUP BY department_idORDER BY avg_sal ASC;
HAVING的使用 (作用:用来过滤数据的)
#练习:查询各个部门中最高工资比10000高的部门信息
#错误的写法:
SELECT department_id,MAX(salary)
FROM employees
WHERE MAX(salary) > 10000
GROUP BY department_id;
#要求1:如果过滤条件中使用了聚合函数,则必须使用HAVING来替换WHERE。否则,报错。
#要求2:HAVING 必须声明在 GROUP BY 的后面。
SELECT department_id,MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary) > 10000;
#要求3:开发中,我们使用HAVING的前提是SQL中使用了GROUP BY。
练习:查询部门id为10,20,30,40这4个部门中最高工资比10000高的部门信息
#推荐,执行效率高
SELECT department_id,MAX(salary)
FROM employees
WHERE department_id IN (10,20,30,40)
GROUP BY department_id
HAVING MAX(salary) > 10000;
结论:当过滤条件中有聚合函数时,则此过滤条件必须声明在HAVING中。
当过滤条件中没有聚合函数时,则此过滤条件声明在WHERE中或HAVING中都可以。但是,建议大家声明在WHERE中。
WHERE 与 HAVING 的对比
1. 从适用范围上来讲,HAVING的适用范围更广。
2. 如果过滤条件中没有聚合函数:这种情况下,WHERE的执行效率要高于HAVING
SELECT ....,....,....(存在聚合函数)
FROM ... (LEFT / RIGHT)JOIN ....ON 多表的连接条件
(LEFT / RIGHT)JOIN ... ON ....
WHERE 不包含聚合函数的过滤条件
GROUP BY ...,....
HAVING 包含聚合函数的过滤条件
ORDER BY ....,...(ASC / DESC )
LIMIT ...,....
聚合函数的课后练习
1.where子句可否使用组函数进行过滤?
No
2.查询公司员工工资的最大值,最小值,平均值,总和
SELECT MAX(salary) max_sal ,MIN(salary) mim_sal,AVG(salary) avg_sal,SUM(salary) sum_sal
FROM employees;
3.查询各job_id的员工工资的最大值,最小值,平均值,总和
SELECT job_id,MAX(salary),MIN(salary),AVG(salary),SUM(salary)
FROM employees
GROUP BY job_id;
4.选择具有各个job_id的员工人数
SELECT job_id,COUNT(*)
FROM employees
GROUP BY job_id;
5.查询员工最高工资和最低工资的差距(DIFFERENCE) #DATEDIFF
SELECT MAX(salary) - MIN(salary) "DIFFERENCE"
FROM employees;
6.查询各个管理者手下员工的最低工资,其中最低工资不能低于6000,没有管理者的员工不计算在内
SELECT manager_id,MIN(salary)
FROM employees
WHERE manager_id IS NOT NULL
GROUP BY manager_id
HAVING MIN(salary)>=6000;
7.查询所有部门的名字,location_id,员工数量和平均工资,并按平均工资降序
SELECT d.department_name,d.location_id,COUNT(employee_id),AVG(salary)
FROM departments d LEFT JOIN employees e
ON d.`department_id` = e.`department_id`
GROUP BY department_name,location_id
8.查询每个工种、每个部门的部门名、工种名和最低工资
SELECT d.department_name,e.job_id,MIN(salary)
FROM departments d LEFT JOIN employees e
ON d.`department_id` = e.`department_id`
GROUP BY department_name,job_id
相关文章:

MySQL(5)
聚合函数 GROUP BY 的使用 需求:查询各个部门的平均工资,最高工资SELECT department_id,AVG(salary),SUM(salary)FROM employeesGROUP BY department_id;需求:查询各个job_id的平均工资SELECT job_id,AVG(salary)FROM employeesGROUP BY jo…...
区块链之快照
定义 区块链快照是区块链技术中一个非常重要的概念,它可以帮助区块链系统提高性能和数据管理效率。 什么是区块链快照 区块链快照是指在某个时间点对整个区块链的状态进行保存和备份的过程。 快照会记录区块链上所有账户的余额、合约状态等信息,并将其序列化存储起来。 这样…...
自学前端第一天
HTML标签 ’HTML‘全程是‘hypertext Markup langage(超文本标记语言) HTML通过一系列的’标签(也称为元素)‘来定义文本、图像、链接。HTML标签是由尖括号包围的关键字。 标签通常成对存在,包括开始标签和结束标签(也称为双标签…...
SQL Server几种琐
SQL Server 中的锁类型主要包括以下几种,它们用于控制并发访问和数据一致性: 1. 共享锁(Shared Lock,S 锁): - 用于读取操作(如 SELECT 语句)。 - 允许多个事务同时读取同一资…...

redis 一些笔记1
redis 一、redis事务二、管道2.1 事务与管道的区别 三、主从复制3.13.2 权限细节3.3 基本操作命令3.4 常用3.4.1 一主几从3.4.2 薪火相传3.4.3 反客为主 3.5 步骤3.6 缺点 一、redis事务 放在一个队列里,依次执行,并不保证一致性。与mysql事务不同。 命…...

【计网复习】应用层总结(不含HTTP和错题重点解析)
应用层总结(不含HTTP和错题重点解析) 应用层简介 应用层的主要功能常见的应用层协议小林对于应用层通常的解释 网络应用模型 客户端-服务器模型(Client-Server Model, C/S) 特点优点缺点应用场景 对等网络模型(Peer-to…...
carbondata连接数优化
一,背景 carbondata的入库采用arbonData Thrift Server方式提供,由于存在异常的入库segments但是显示状态是success,所以每天运行另一个博客中的脚本,出现连接超时,运行不正常,排查是每天连接数太多&#x…...

云和运维(SRE)的半生缘-深读实证02
这个标题不算太夸张,云计算和很多IT岗位都有缘,但是和运维(SRE)岗位的缘分最深。 “深读实证”系列文章都会结合一些外部事件,点明分析《云计算行业进阶指南》书中的内容。本次分享介绍了下列内容: 我以运维…...

java基础操作5——java自定义获取任意年、月、日的起始和结束时间
在实际项目开发过程中,获取任意时间的起始和结束时间是常用操作,尤其对于统计业务来说,更是必要操作,理解了时间自定义的规律,对于开发人员的效率提升是大有裨益的。 一.获取任意年的起始和结束时间 1.获取任意年的起…...

【Java04】引用变量数组初始化的内存机制
引用类型数组指向的元素也是引用。其本质是: 由一个在栈上的引用数组变量指向一块堆内存;这块堆内存里存储的元素是引用,又分别指向其他堆内存。 class Person // Person是一个自定义的类 {public int age;puiblic double height;public vo…...

基于JSP的足球赛会管理系统
你好呀,我是计算机学长猫哥!如果有相关需求,文末可以找到我的联系方式。 开发语言:Java 数据库:MySQL 技术:JSP技术 工具:IDEA/Eclipse、Navicat、Maven 系统展示 首页 个人中心 球队介绍…...

博客摘录「 AXI三种接口及DMA DDR XDMA介绍(应用于vivado中的ip调用)」2024年6月10日
关键要点: 1.AXI Stream经过协议转换可使用AXI_FULL(PS与PL间的接口,如GP、HP和ACP)。 2.传输数据类里就涉及一个握手协议,即在主从双方数据通信前,有一个握手的过程。基本内容:数据的传输源会…...

Bigtable: A Distributed Storage System for Structured Data
2003年USENIX,出自谷歌,开启分布式大数据时代的三篇论文之一,底层依赖 GFS 存储,上层供 MapReduce 查询使用 Abstract 是一种分布式结构化数据存储管理系统,存储量级是PB级别。存储的数据类型和延时要求差异都很大。…...
RAG下的prompt编写探索
针对特定领域的回答,编写抽象的prompt需要在细节和灵活性之间找到平衡。我们需要一个既能涵盖普遍步骤又能适应不同问题的框架。以下是如何在这种情况下编写抽象prompt的方法,以及适用于各种技术领域的通用策略。 一、编写抽象Prompt的通用策略 定义用户问题和背景信息: 明…...

【计算机组成原理】指令系统考研真题详解之拓展操作码!
计算机组成原理:指令系统概述与深入解析 1. 指令系统概述 计算机软硬件界面的概念 在计算机组成原理中,指令系统扮演着至关重要的角色,它是计算机软硬件界面的核心。软件通过指令与硬件进行通信,硬件根据指令执行相应的操作。指…...

北航第六次数据结构与程序设计作业(查找与排序)选填题
一、 顺序查找的平均查找长度ASL(1 2 …… n)/ n (n 1)/ 2 二、 这半查找法的平均查找次数和判定树的深度有关系。若查找一个不存在的元素,说明进行了深度次比较。 注意,判定树不是满二叉树,因此深…...
Optional详解和常用API
目录 一、Optional简介 二、构建Optional对象三种方式 2.1 Optional.of(value) 2.1.1 使用案例 2.2 Optional.ofNullable(value) 2.2.1 使用案例 2.3 Optional.empty() 2.3.1 使用案例 三、Optional常用的api解析和使用案例 3.1 isPresent 3.1.1 使用案例 3.2 ifPrese…...

Unity 3D 物体的Inspector面板
1、Transform:位置、旋转、大小 2、Mesh Filter:物体的形状 3、Mesh Renderer:物体渲染(物体的衣服) 4、Collider:碰撞体...

闪烁与常亮的符号状态判断机制(状态机算法)
背景说明 在视觉项目中,经常要判断目标的状态,例如:符号的不同频率闪烁、常亮等。然而常规的视觉算法例如YOLO,仅仅只能获取当前帧是否存在该符号,而无法对于符号状态进行判断,然而重新写一个基于时序的卷积…...

Hyper-V如何将文件复制到虚拟机?教您3个简单的方法!
需要将文件复制到虚拟机! “大家好,有谁知道Hyper-V怎么将文件复制到虚拟机吗?我有一些文件,想要从主机中复制进虚拟机中,但是我不知道该怎么操作,有谁可以帮帮我吗?谢谢。” Hyper-V虚拟机可…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...