当前位置: 首页 > news >正文

R可视化:ggpubr包学习

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者

  • Xiao hong书:生信学习者

  • 知hu:生信学习者

  • CDSN:生信学习者2

介绍

ggpubr是我经常会用到的R包,它傻瓜式的画图方式对很多初次接触R绘图的人来讲是很友好的。该包有个stat_compare_means函数可以做组间假设检验分析。

安装R包

install.packages("ggpubr")
devtools::devtools::install_github("kassambara/ggpubr")
library(ggpubr)
​
​
plotdata <- data.frame(sex = factor(rep(c("F", "M"), each=200)),weight = c(rnorm(200, 55), rnorm(200, 58)))

密度图density

ggdensity(plotdata, x = "weight",add = "mean", rug = TRUE,    # x轴显示分布密度color = "sex", fill = "sex",palette = c("#00AFBB", "#E7B800"))

柱状图histogram

gghistogram(plotdata, x = "weight",bins = 30,add = "mean", rug = TRUE,color = "sex", fill = "sex",palette = c("#00AFBB", "#E7B800"))

箱线图boxplot

df <- ToothGrowth
head(df)
my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") )
ggboxplot(df, x = "dose", y = "len",color = "dose", palette =c("#00AFBB", "#E7B800", "#FC4E07"),add = "jitter", shape = "dose")+stat_compare_means(comparisons = my_comparisons)+ # Add pairwise comparisons p-valuestat_compare_means(label.y = 50) 

小提琴图violin

ggviolin(df, x = "dose", y = "len", fill = "dose",palette = c("#00AFBB", "#E7B800", "#FC4E07"),add = "boxplot", add.params = list(fill = "white"))+stat_compare_means(comparisons = my_comparisons, label = "p.signif")+ # Add significance levelsstat_compare_means(label.y = 50)  

点图dotplot

ggdotplot(ToothGrowth, x = "dose", y = "len",color = "dose", palette = "jco", binwidth = 1)

有序条形图 ordered bar plots

data("mtcars")
dfm <- mtcars
dfm$cyl <- as.factor(dfm$cyl)
dfm$name <- rownames(dfm)
head(dfm[, c("name", "wt", "mpg", "cyl")])
​
ggbarplot(dfm, x = "name", y = "mpg",fill = "cyl",               # change fill color by cylcolor = "white",            # Set bar border colors to whitepalette = "jco",            # jco journal color palett. see ?ggparsort.val = "asc",           # Sort the value in dscending ordersort.by.groups = TRUE,      # Sort inside each groupx.text.angle = 90)          # Rotate vertically x axis texts

偏差图Deviation graphs

dfm$mpg_z <- (dfm$mpg -mean(dfm$mpg))/sd(dfm$mpg)
dfm$mpg_grp <- factor(ifelse(dfm$mpg_z < 0, "low", "high"), levels = c("low", "high"))
# Inspect the data
head(dfm[, c("name", "wt", "mpg", "mpg_z", "mpg_grp", "cyl")])
​
ggbarplot(dfm, x = "name", y = "mpg_z",fill = "mpg_grp",           # change fill color by mpg_levelcolor = "white",            # Set bar border colors to whitepalette = "jco",            # jco journal color palett. see ?ggparsort.val = "asc",           # Sort the value in ascending ordersort.by.groups = FALSE,     # Don't sort inside each groupx.text.angle = 90,          # Rotate vertically x axis textsylab = "MPG z-score",rotate = FALSE,xlab = FALSE,legend.title = "MPG Group")

棒棒糖图 lollipop chart

ggdotchart(dfm, x = "name", y = "mpg",color = "cyl",                                # Color by groupspalette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palettesorting = "descending",                       # Sort value in descending orderadd = "segments",                             # Add segments from y = 0 to dotsrotate = TRUE,                                # Rotate verticallygroup = "cyl",                                # Order by groupsdot.size = 6,                                 # Large dot sizelabel = round(dfm$mpg),                       # Add mpg values as dot labelsfont.label = list(color = "white", size = 9, vjust = 0.5),               # Adjust label parametersggtheme = theme_pubr())                       # ggplot2 theme

偏差图Deviation graph

ggdotchart(dfm, x = "name", y = "mpg_z",color = "cyl",                                # Color by groupspalette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palettesorting = "descending",                       # Sort value in descending orderadd = "segments",                             # Add segments from y = 0 to dotsadd.params = list(color = "lightgray", size = 2), # Change segment color and sizegroup = "cyl",                                # Order by groupsdot.size = 6,                                 # Large dot sizelabel = round(dfm$mpg_z,1),                   # Add mpg values as dot labelsfont.label = list(color = "white", size = 9, vjust = 0.5),               # Adjust label parametersggtheme = theme_pubr())+                      # ggplot2 themegeom_hline(yintercept = 0, linetype = 2, color = "lightgray")

散点图scatterplot

df <- datasets::iris
head(df)
ggscatter(df, x = 'Sepal.Width', y = 'Sepal.Length', palette = 'jco', shape = 'Species', add = 'reg.line',color = 'Species', conf.int = TRUE)

  • 添加回归线的系数

ggscatter(df, x = 'Sepal.Width', y = 'Sepal.Length', palette = 'jco', shape = 'Species', add = 'reg.line',color = 'Species', conf.int = TRUE)+stat_cor(aes(color=Species),method = "pearson", label.x = 3)

  • 添加聚类椭圆 concentration ellipses

data("mtcars")
dfm <- mtcars
dfm$cyl <- as.factor(dfm$cyl)
dfm$name <- rownames(dfm)
​
p1 <- ggscatter(dfm, x = "wt", y = "mpg",color = "cyl", palette = "jco",shape = "cyl",ellipse = TRUE)
p2 <- ggscatter(dfm, x = "wt", y = "mpg",color = "cyl", palette = "jco",shape = "cyl",ellipse = TRUE,ellipse.type = "convex")
cowplot::plot_grid(p1, p2, align = "hv", nrow = 1)

  • 添加mean和stars

ggscatter(dfm, x = "wt", y = "mpg",color = "cyl", palette = "jco",shape = "cyl",ellipse = TRUE, mean.point = TRUE,star.plot = TRUE)

  • 显示点标签

dfm$name <- rownames(dfm)
p3 <- ggscatter(dfm, x = "wt", y = "mpg",color = "cyl", palette = "jco",label = "name",repel = TRUE)
p4 <- ggscatter(dfm, x = "wt", y = "mpg",color = "cyl", palette = "jco",label = "name",repel = TRUE,label.select = c("Toyota Corolla", "Merc 280", "Duster 360"))
cowplot::plot_grid(p3, p4, align = "hv", nrow = 1)

气泡图bubble plot

ggscatter(dfm, x = "wt", y = "mpg",color = "cyl",palette = "jco",size = "qsec", alpha = 0.5)+scale_size(range = c(0.5, 15))    # Adjust the range of points size

连线图 lineplot

p1 <- ggbarplot(ToothGrowth, x = "dose", y = "len", add = "mean_se",color = "supp", palette = "jco", position = position_dodge(0.8))+stat_compare_means(aes(group = supp), label = "p.signif", label.y = 29)
p2 <- ggline(ToothGrowth, x = "dose", y = "len", add = "mean_se",color = "supp", palette = "jco")+stat_compare_means(aes(group = supp), label = "p.signif", label.y = c(16, 25, 29))
cowplot::plot_grid(p1, p2, ncol = 2, align = "hv")

添加边沿图 marginal plots

library(ggExtra)
p <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",color = "Species", palette = "jco",size = 3, alpha = 0.6)
ggMarginal(p, type = "boxplot")

  • 第二种添加方式: 分别画出三个图,然后进行组合

sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",color = "Species", palette = "jco",size = 3, alpha = 0.6, ggtheme = theme_bw())             
​
xplot <- ggboxplot(iris, x = "Species", y = "Sepal.Length", color = "Species", fill = "Species", palette = "jco",alpha = 0.5, ggtheme = theme_bw())+ rotate()
​
yplot <- ggboxplot(iris, x = "Species", y = "Sepal.Width",color = "Species", fill = "Species", palette = "jco",alpha = 0.5, ggtheme = theme_bw())
​
​
sp <- sp + rremove("legend")
yplot <- yplot + clean_theme() + rremove("legend")
xplot <- xplot + clean_theme() + rremove("legend")
cowplot::plot_grid(xplot, NULL, sp, yplot, ncol = 2, align = "hv", rel_widths = c(2, 1), rel_heights = c(1, 2))

  • 上图主图和边沿图之间的space太大,第三种方法能克服这个缺点

library(cowplot) 
# Main plot
pmain <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species))+geom_point()+ggpubr::color_palette("jco")
​
# Marginal densities along x axis
xdens <- axis_canvas(pmain, axis = "x")+geom_density(data = iris, aes(x = Sepal.Length, fill = Species),alpha = 0.7, size = 0.2)+ggpubr::fill_palette("jco")
​
# Marginal densities along y axis
# Need to set coord_flip = TRUE, if you plan to use coord_flip()
ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE)+geom_boxplot(data = iris, aes(x = Sepal.Width, fill = Species),alpha = 0.7, size = 0.2)+coord_flip()+ggpubr::fill_palette("jco")
​
p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")
p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"), position = "right")
ggdraw(p2)

  • 第四种方法,通过grob设置

# Scatter plot colored by groups ("Species")
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",color = "Species", palette = "jco",size = 3, alpha = 0.6)
# Create box plots of x/y variables
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Box plot of the x variable
xbp <- ggboxplot(iris$Sepal.Length, width = 0.3, fill = "lightgray") +rotate() +theme_transparent()
# Box plot of the y variable
ybp <- ggboxplot(iris$Sepal.Width, width = 0.3, fill = "lightgray") +theme_transparent()
# Create the external graphical objects
# called a "grop" in Grid terminology
xbp_grob <- ggplotGrob(xbp)
ybp_grob <- ggplotGrob(ybp)
# Place box plots inside the scatter plot
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
xmin <- min(iris$Sepal.Length); xmax <- max(iris$Sepal.Length)
ymin <- min(iris$Sepal.Width); ymax <- max(iris$Sepal.Width)
yoffset <- (1/15)*ymax; xoffset <- (1/15)*xmax
# Insert xbp_grob inside the scatter plot
sp + annotation_custom(grob = xbp_grob, xmin = xmin, xmax = xmax, ymin = ymin-yoffset, ymax = ymin+yoffset) +# Insert ybp_grob inside the scatter plotannotation_custom(grob = ybp_grob,xmin = xmin-xoffset, xmax = xmin+xoffset, ymin = ymin, ymax = ymax)

二维密度图 2d density

sp <- ggscatter(iris, x = "Sepal.Length", y = "Sepal.Width",color = "lightgray")
p1 <- sp + geom_density_2d()
# Gradient color
p2 <- sp + stat_density_2d(aes(fill = ..level..), geom = "polygon")
# Change gradient color: custom
p3 <- sp + stat_density_2d(aes(fill = ..level..), geom = "polygon")+gradient_fill(c("white", "steelblue"))
# Change the gradient color: RColorBrewer palette
p4 <- sp + stat_density_2d(aes(fill = ..level..), geom = "polygon") +gradient_fill("YlOrRd")
​
cowplot::plot_grid(p1, p2, p3, p4, ncol = 2, align = "hv")

混合图

混合表、字体和图

# Density plot of "Sepal.Length"
#::::::::::::::::::::::::::::::::::::::
density.p <- ggdensity(iris, x = "Sepal.Length", fill = "Species", palette = "jco")
# Draw the summary table of Sepal.Length
#::::::::::::::::::::::::::::::::::::::
# Compute descriptive statistics by groups
stable <- desc_statby(iris, measure.var = "Sepal.Length",grps = "Species")
stable <- stable[, c("Species", "length", "mean", "sd")]
# Summary table plot, medium orange theme
stable.p <- ggtexttable(stable, rows = NULL, theme = ttheme("mOrange"))
# Draw text
#::::::::::::::::::::::::::::::::::::::
text <- paste("iris data set gives the measurements in cm","of the variables sepal length and width","and petal length and width, respectively,","for 50 flowers from each of 3 species of iris.","The species are Iris setosa, versicolor, and virginica.", sep = " ")
text.p <- ggparagraph(text = text, face = "italic", size = 11, color = "black")
# Arrange the plots on the same page
ggarrange(density.p, stable.p, text.p, ncol = 1, nrow = 3,heights = c(1, 0.5, 0.3))

  • 注释table在图上

density.p <- ggdensity(iris, x = "Sepal.Length", fill = "Species", palette = "jco")
​
stable <- desc_statby(iris, measure.var = "Sepal.Length",grps = "Species")
stable <- stable[, c("Species", "length", "mean", "sd")]
stable.p <- ggtexttable(stable, rows = NULL, theme = ttheme("mOrange"))
density.p + annotation_custom(ggplotGrob(stable.p),xmin = 5.5, ymin = 0.7,xmax = 8)

systemic information

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)
​
Matrix products: default
​
locale:
[1] LC_COLLATE=Chinese (Simplified)_China.936  LC_CTYPE=Chinese (Simplified)_China.936   
[3] LC_MONETARY=Chinese (Simplified)_China.936 LC_NUMERIC=C                              
[5] LC_TIME=Chinese (Simplified)_China.936    
​
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
​
other attached packages:
[1] ggpubr_0.4.0  ggplot2_3.3.2
​
loaded via a namespace (and not attached):[1] zip_2.0.4         Rcpp_1.0.3        cellranger_1.1.0  pillar_1.4.6      compiler_3.6.1    forcats_0.5.0    [7] tools_3.6.1       digest_0.6.27     lifecycle_0.2.0   tibble_3.0.4      gtable_0.3.0      pkgconfig_2.0.3  
[13] rlang_0.4.8       openxlsx_4.2.3    ggsci_2.9         rstudioapi_0.10   curl_4.3          haven_2.3.1      
[19] rio_0.5.16        withr_2.1.2       dplyr_1.0.2       generics_0.0.2    vctrs_0.3.4       hms_0.5.3        
[25] grid_3.6.1        tidyselect_1.1.0  glue_1.4.2        data.table_1.13.2 R6_2.4.1          rstatix_0.6.0    
[31] readxl_1.3.1      foreign_0.8-73    carData_3.0-4     farver_2.0.3      tidyr_1.0.0       purrr_0.3.3      
[37] car_3.0-10        magrittr_1.5      scales_1.1.0      backports_1.1.10  ellipsis_0.3.1    abind_1.4-5      
[43] colorspace_1.4-1  ggsignif_0.6.0    labeling_0.4.2    stringi_1.4.3     munsell_0.5.0     broom_0.7.2      
[49] crayon_1.3.4

相关文章:

R可视化:ggpubr包学习

欢迎大家关注全网生信学习者系列&#xff1a; WX公zhong号&#xff1a;生信学习者 Xiao hong书&#xff1a;生信学习者 知hu&#xff1a;生信学习者 CDSN&#xff1a;生信学习者2 介绍 ggpubr是我经常会用到的R包&#xff0c;它傻瓜式的画图方式对很多初次接触R绘图的人来…...

优化Spring Boot项目启动时间:详解与实践

目录 引言了解Spring Boot框架启动机制常见启动瓶颈分析优化策略 禁用不必要的自动配置使用Profile进行开发和生产环境区分精简依赖延迟加载Bean并行初始化Bean缓存数据源连接优化Spring Data JPA使用Spring Boot DevTools 通过性能测试工具分析和优化实战示例&#xff1a;一个…...

Android如何简单快速实现RecycleView的拖动重排序功能

本文首发于公众号“AntDream”&#xff0c;欢迎微信搜索“AntDream”或扫描文章底部二维码关注&#xff0c;和我一起每天进步一点点 要实现这个拖动重排序功能&#xff0c;主要是用到了RecycleView的ItemTouchHelper类 首先是定义一个接口 interface ItemTouchHelperAdapter …...

LabVIEW利用旋转编码器脉冲触发数据采集

利用旋转编码器发出的脉冲控制数据采集&#xff0c;可以采用硬件触发方式&#xff0c;以确保每个脉冲都能触发一次数据采集。本文提供了详细的解决方案&#xff0c;包括硬件连接、LabVIEW编程和触发设置&#xff0c;确保数据采集的准确性和实时性。 一、硬件连接 1. 旋转编码…...

Dubbo3 服务原生支持 http 访问,兼具高性能与易用性

作者&#xff1a;刘军 作为一款 rpc 框架&#xff0c;Dubbo 的优势是后端服务的高性能的通信、面向接口的易用性&#xff0c;而它带来的弊端则是 rpc 接口的测试与前端流量接入成本较高&#xff0c;我们需要专门的工具或协议转换才能实现后端服务调用。这个现状在 Dubbo3 中得…...

我在高职教STM32——GPIO入门之蜂鸣器

大家好&#xff0c;我是老耿&#xff0c;高职青椒一枚&#xff0c;一直从事单片机、嵌入式、物联网等课程的教学。对于高职的学生层次&#xff0c;同行应该都懂的&#xff0c;老师在课堂上教学几乎是没什么成就感的。正因如此&#xff0c;才有了借助 CSDN 平台寻求认同感和成就…...

STM32 Customer BootLoader 刷新项目 (一) STM32CubeMX UART串口通信工程搭建

STM32 Customer BootLoader 刷新项目 (一) STM32CubeMX UART串口通信工程搭建 文章目录 STM32 Customer BootLoader 刷新项目 (一) STM32CubeMX UART串口通信工程搭建功能与作用典型工作流程 1. 硬件原理图介绍2. STM32 CubeMX工程搭建2.1 创建工程2.2 系统配置2.3 USART串口配…...

如果搜索一定超时,如何用dp来以空间换时间

E - Alphabet Tiles (atcoder.jp) 题目大意&#xff1a;1到k长度的字符串时&#xff0c;在A-Z给定数量下&#xff0c;搭配出多少种不同的字符串 思路 排列组合&#xff0c;会死人的 暴搜&#xff1a;可以解决&#xff0c;但是时间太长 dp&#xff1a;考虑前 i 个字母&…...

MySQL常见的命令

MySQL常见的命令 查看数据库&#xff08;注意添加分号&#xff09; show databases;进入到某个库 use 库; 例如&#xff1a;进入test use test;显示表格 show tables;直接展示某个库里面的表 show tables from 库&#xff1b; 例如&#xff1a;展示mysql中的表格 show tabl…...

11 类型泛化

11 类型泛化 1、函数模版1.1 前言1.2 函数模版1.3 隐式推断类型实参1.4 函数模板重载1.5 函数模板类型形参的默认类型&#xff08;C11标准&#xff09; 2、类模版2.1 类模板的成员函数延迟实例化2.2 类模板的静态成员2.3 类模板的递归实例化2.4 类模板类型形参缺省值 3、类模板…...

UE4_后期_ben_模糊和锐化滤镜

学习笔记&#xff0c;不喜勿喷&#xff0c;侵权立删&#xff0c;祝愿生活越来越好&#xff01; 本篇教程主要介绍后期处理的简单模糊和锐化滤镜效果&#xff0c;学习之前首先要回顾下上节课介绍的屏幕扭曲效果&#xff1a; 这是全屏效果&#xff0c;然后又介绍了几种蒙版&#…...

Spring Boot中Excel的导入导出的实现之Apache POI框架使用教程

文章目录 前言一、Apache POI 是什么&#xff1f;二、使用 Apache POI 实现 Excel 的导入和导出① 导入 Excel1. 添加依赖2. 编写导入逻辑3. 在 Controller 中处理上传请求 ② 导出 Excel1. 添加依赖2. 编写导出逻辑3. 在 Controller 中处理导出请求 总结 前言 在 Spring Boot …...

CentOS搭建kubernetes集群详细过程(yum安装方式)

kubernetes集群搭建详细过程&#xff08;yum安装方式&#xff09; Kubernetes&#xff0c;也被称为K8s&#xff0c;是一个多功能的容器管理工具&#xff0c;它不仅能够协调和调度容器的部署&#xff0c;而且还能监控容器的健康状况并自动修复常见问题。这个平台是在谷歌十多年…...

Java 面试题:Java 的 Exception 和 Error 有什么区别?

在Java编程中&#xff0c;异常处理是确保程序稳健性和可靠性的重要机制。Java提供了一套完善的异常处理框架&#xff0c;通过捕获和处理异常&#xff0c;开发者可以有效地应对程序运行时可能出现的各种问题。在这一框架中&#xff0c;Exception和Error是两个核心概念&#xff0…...

在Vue 3中,el-select循环el-option的常见踩坑点,value值绑定对象类型?选中效果不准确?

在Vue 3中&#xff0c;el-select 组件是来自 Element Plus UI 库的一部分。 如果你想要设置默认选中的选项&#xff0c;你可以使用 v-model 来绑定选中的值。如果你想要在某个时刻让某个选项显示为已选中&#xff0c;可以设置对应的值到 v-model 绑定的数据。 <template>…...

Qt实现单例模式:Q_GLOBAL_STATIC和Q_GLOBAL_STATIC_WITH_ARGS

目录 1.引言 2.了解Q_GLOBAL_STATIC 3.了解Q_GLOBAL_STATIC_WITH_ARGS 4.实现原理 4.1.对象的创建 4.2.QGlobalStatic 4.3.宏定义实现 4.4.注意事项 5.总结 1.引言 设计模式之单例模式-CSDN博客 所谓的全局静态对象&#xff0c;大多是在单例类中所见&#xff0c;在之前…...

通过nginx转发后应用偶发502bad gateway

序言 学习了一些东西&#xff0c;如何才是真正自己能用的呢&#xff1f;好像就是看自己的潜意识的反应&#xff0c;例如解决了一个问题&#xff0c;那么下次再碰到类似的问题&#xff0c;能直接下意识的去找到对应的信息&#xff0c;从而解决&#xff0c;而不是和第一次碰到一样…...

linux中如何进行yum源的挂载

linux中如何进行yum源的挂载 ​ 1.首先创建目录[rootserver /]# mkdir /rhel92.使用mount命令进行、dev/cdrom/的镜像文件进行挂载[rootserver /]# mount /dev/cdrom /rhel9/ ​ 注意&#xff1a;此时设立的是临时命令。重启后则失效&#xff0c;若想在下次开启后仍然挂载&a…...

ffmpeg的部署踩坑及简单使用方式

ffmpeg的使用方式有以下几种: 使用原生安装包 直接在ffmpeg官网上下载安装该软件,加入到环境变量中就可以使用了 优点:简单,灵活,代码中也不用添加其他第三方的包 缺点:需要手动安装ffmpeg,这点比较麻烦 部署-windows 在windows环境下,有时就算加入到了环境变量,…...

misc刷题记录2[陇剑杯 2021]

[陇剑杯 2021]webshell (1)单位网站被黑客挂马&#xff0c;请您从流量中分析出webshell&#xff0c;进行回答&#xff1a; 黑客登录系统使用的密码是_____________。得到的flag请使用NSSCTF{}格式提交。 这里我的思路是&#xff0c;既然要选择的时间段是黑客登录网站以后&…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...