当前位置: 首页 > news >正文

机器学习课程复习——逻辑回归

 1. 激活函数

Q:激活函数有哪些?

SigmoidS型函数\frac{1}{1+e^{-x}}
Tanh 双曲正切函数

相关文章:

机器学习课程复习——逻辑回归

1. 激活函数 Q:激活函数有哪些? SigmoidS型函数Tanh 双曲正切函数...

Rocky Linux 更换CN镜像地址

官方镜像列表&#xff0c;下拉查找 官方镜像列表&#xff1a;https://mirrors.rockylinux.org/mirrormanager/mirrorsCN 开头的站点。 一键更改镜像地址脚本 以下是更改从默认更改到阿里云地址 cat <<EOF>>/RackyLinux_Update_repo.sh #!/bin/bash # -*- codin…...

Linux rm命令由于要删的文件太多报-bash: /usr/bin/rm:参数列表过长,无法删除的解决办法

银河麒麟系统&#xff0c;在使用rm命令删除文件时报了如下错误&#xff0c;删不掉&#xff1a; 查了一下&#xff0c;原因就是要删除的文件太多了&#xff0c;例如我当前要删的文件共有这么多&#xff1a; 查到了解决办法&#xff0c;记录在此。需要使用xargs命令来解决参数列表…...

【包管理】Node.JS与Ptyhon安装

文章目录 Node.JSPtyhon Node.JS Node.js的安装通常包括以下几个步骤&#xff1a; 访问Node.js官网&#xff1a; 打开Node.js的官方网站&#xff08;如&#xff1a;https://nodejs.org/zh-cn/download/&#xff09;。 下载安装包&#xff1a; 根据你的操作系统选择对应的Node…...

SpringMVC系列四: Rest-优雅的url请求风格

Rest请求 &#x1f49e;Rest基本介绍&#x1f49e;Rest风格的url-完成增删改查需求说明代码实现HiddenHttpMethodFilter机制注意事项和细节 &#x1f49e;课后作业 上一讲, 我们学习的是SpringMVC系列三: Postman(接口测试工具) 现在打开springmvc项目 &#x1f49e;Rest基本介…...

Hexo 搭建个人博客(ubuntu20.04)

1 安装 Nodejs 和 npm 首先登录NodeSource官网&#xff1a; Nodesource Node.js DEB 按照提示安装最新的 Node.js 及其配套版本的 npm。 &#xff08;1&#xff09;以 sudo 用户身份运行下面的命令&#xff0c;下载并执行 NodeSource 安装脚本&#xff1a; sudo curl -fsSL…...

【论文阅读】-- Attribute-Aware RBFs:使用 RT Core 范围查询交互式可视化时间序列颗粒体积

Attribute-Aware RBFs: Interactive Visualization of Time Series Particle Volumes Using RT Core Range Queries 摘要1 引言2 相关工作2.1 粒子体渲染2.2 RT核心方法 3 渲染彩色时间序列粒子体积3.1 场重构3.1.1 密度场 Φ3.1.2 属性字段 θ3.1.3 优化场重建 3.2 树结构构建…...

A类IP介绍

1&#xff09;A类ip给谁用&#xff1a; 给广域网用&#xff0c;公网ip使用A类地址&#xff0c;作为公网ip时&#xff0c;Ip地址是全球唯一的。 2&#xff09;基本介绍 ip地址范围 - 理论范围 0.0.0.0 ~127.255.255.255&#xff1a;00000000 00000000 00000000 00000000 ~ 0111…...

HTML5基本语法

文章目录 HTML5基本语法一、基础标签1、分级标题2、段标签3、换行及水平线标签4、文本格式标签 二、图片标签1、格式2、属性介绍 三、音频标签1、格式2、属性介绍 四、视频标签1、格式2、属性介绍 五、链接标签1、格式2、显示特点3、属性介绍4、补充&#xff08;空链接&#xf…...

正则表达式常用表示

视频教程&#xff1a;10分钟快速掌握正则表达式 正则表达式在线测试工具&#xff08;亲测好用&#xff09;&#xff1a;测试工具 正则表达式常用表示 限定符 a*&#xff1a;a出现0次或多次a&#xff1a;a出现1次或多次a?&#xff1a;a出现0次或1次a{6}&#xff1a;a出现6次a…...

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】007 - evb-rk3568_defconfig 配置编译全过程

【OpenHarmony4.1 之 U-Boot 2024.07源码深度解析】007 - evb-rk3568_defconfig 配置编译全过程 一、编译后目录列表二、make distclean三、生成.config文件:make V=1 ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- evb-rk3568_defconfig四、开始编译:CROSS_COMPILE=aarch64-…...

11.1 Go 标准库的组成

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

【UG\NX二次开发】UF 调用Grip例子(实现Grip调用目标dll)(UF_call_grip)

此例子是对&#xff1a;【UG\NX二次开发】UF 加载调用与卸载目标dll(UF_load_library、UF_unload_library)_ug二次开发dll自动加载-CSDN博客的补充。 ①创建txt文本&#xff0c;编写以下内容(功能&#xff1a;接收路径&#xff0c;调用该路径的dll)。改后缀为Grip文件(.grs)。…...

[算法刷题积累] 两数之和以及进阶引用

两数之和很经典&#xff0c;通常对于首先想到的就是暴力的求解&#xff0c;当然这没有问题&#xff0c;但是我们如果想要追求更优秀算法&#xff0c;就需要去实现更加简便的复杂度。 这里就要提到我们的哈希表法: 我们可以使用unordered_map去实现&#xff0c;也可以根据题目&a…...

pytest+parametrize+yaml实例

# 一、yaml格式 # # yaml是一种数据类型&#xff0c;可以和json之间灵活的切换&#xff0c;支持注释、换行、字符串等。可以用于配置文件或编写测试用例。 # # 数据结构&#xff1a;一般是键值对的方式出现。注意编写时值前面必须有空格&#xff0c;键&#xff1a;&#xff08;…...

【HarmonyOS】鸿蒙应用模块化实现

【HarmonyOS】鸿蒙应用模块化实现 一、Module的概念 Module是HarmonyOS应用的基本功能单元&#xff0c;包含了源代码、资源文件、第三方库及应用清单文件&#xff0c;每一个Module都可以独立进行编译和运行。一个HarmonyOS应用通常会包含一个或多个Module&#xff0c;因此&am…...

深入Node.js:实现网易云音乐数据自动化抓取

随着互联网技术的飞速发展&#xff0c;数据已成为企业和个人获取信息、洞察市场趋势的重要资源。音频数据&#xff0c;尤其是来自流行音乐平台如网易云音乐的数据&#xff0c;因其丰富的用户交互和内容多样性&#xff0c;成为研究用户行为和市场动态的宝贵资料。本文将深入探讨…...

【Docker实战】jenkins卡在编译Dockerfile的问题

我们的项目是标准的CI/CD流程&#xff0c;也即是GitlabJenkinsHarborDocker的容器自动化部署。 经历了上上周的docker灾难&#xff0c;上周的服务器磁盘空间灾难&#xff0c;这次又发生了jenkins卡住的灾难。 当然&#xff0c;这些灾难有一定的连锁反应&#xff0c;是先发生的d…...

rust 多线程分发数据

use std::sync::{Arc, Mutex}; use std::collections::VecDeque; use std::thread::{self, sleep}; use rand::Rng; use std::time::Duration;fn main() {let list: Arc<Mutex<VecDeque<String>>> Arc::new(Mutex::new(VecDeque::new()));// 创建修改线程le…...

CentOS 7x 使用Docker 安装oracle11g完整方法

1.安装docker-ce 安装依赖的软件包 yum install -y yum-utils device-mapper-persistent-data lvm2添加Docker的阿里云yum源 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo更新软件包索引 yum makecache fast查看docker…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...