[算法刷题积累] 两数之和以及进阶引用
两数之和很经典,通常对于首先想到的就是暴力的求解,当然这没有问题,但是我们如果想要追求更优秀算法,就需要去实现更加简便的复杂度。
这里就要提到我们的哈希表法: 我们可以使用unordered_map去实现,也可以根据题目,用数组去模拟哈希表,两种方式选择合适的就好。
哈希表通过记录来某一键值是否存在,如果存在则可进一步访问pair中的second类型变量,通过这一系列的组合,就可以用哈希表简化大部分问题。
如本道题,二数之和,就是找寻数组中两个和为target的数,并且返回其下标。
那么数据的值就key,对应的下标就是value。而且题目有要求:你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现,所以我们要先去寻找hash表中键值 target-nums[i]是否存在,存在就说明再nums[i]之前,就有与nums[i]和为target的值出现,所以返回 键值对应的Value(下标)和当前的i即可。 如果没有,则将当前的key(数据的值)添加并且记录其对应的下标。
、变式应用:
- 此道题目,同样很容易想到暴力的解法,但是对于数据庞大的此道题会出现超时的结果。所以我们就要去优化算法结构,正好此题目与两个数据之间的关系有关的,所以很容易想到两数之和的哈希表解法。
- 题目不再是返回满足条件的下标组合,而是输出满足条件下标的对数。所以这里的key键值和value的意义也要对应修改:key指代出现的数据对24取模后的值,value代表数据对24取模之后出现key的次数。
- 举例比如:23出现,对24取模操作,得到23,那么hash[23]++(hash[23]的值代表出现次数)。
- 所以对于两个数有必须要有关系: ( X + Y )%24 == 0
所以就有下面的关系:
最后得到关系: x%24 = (24-y%24)%24
利用这个关系式子,可以找到能与当前数据匹配之后能被24整除的数据对的个数。
具体操作:
1.寻找与当前数据满足条件的数据是否存在,如果存在,则统计次数。
2.如果没有,则将当前数据与24的取模作为key键值取更新value的值。(第一步和第二步一定不能反,如果倒过来,就不满足题目 i < j )
遍历一次整个数组,就可以统计出所有的对数即可。
相关文章:
[算法刷题积累] 两数之和以及进阶引用
两数之和很经典,通常对于首先想到的就是暴力的求解,当然这没有问题,但是我们如果想要追求更优秀算法,就需要去实现更加简便的复杂度。 这里就要提到我们的哈希表法: 我们可以使用unordered_map去实现,也可以根据题目&a…...
pytest+parametrize+yaml实例
# 一、yaml格式 # # yaml是一种数据类型,可以和json之间灵活的切换,支持注释、换行、字符串等。可以用于配置文件或编写测试用例。 # # 数据结构:一般是键值对的方式出现。注意编写时值前面必须有空格,键:(…...
【HarmonyOS】鸿蒙应用模块化实现
【HarmonyOS】鸿蒙应用模块化实现 一、Module的概念 Module是HarmonyOS应用的基本功能单元,包含了源代码、资源文件、第三方库及应用清单文件,每一个Module都可以独立进行编译和运行。一个HarmonyOS应用通常会包含一个或多个Module,因此&am…...
深入Node.js:实现网易云音乐数据自动化抓取
随着互联网技术的飞速发展,数据已成为企业和个人获取信息、洞察市场趋势的重要资源。音频数据,尤其是来自流行音乐平台如网易云音乐的数据,因其丰富的用户交互和内容多样性,成为研究用户行为和市场动态的宝贵资料。本文将深入探讨…...
【Docker实战】jenkins卡在编译Dockerfile的问题
我们的项目是标准的CI/CD流程,也即是GitlabJenkinsHarborDocker的容器自动化部署。 经历了上上周的docker灾难,上周的服务器磁盘空间灾难,这次又发生了jenkins卡住的灾难。 当然,这些灾难有一定的连锁反应,是先发生的d…...
rust 多线程分发数据
use std::sync::{Arc, Mutex}; use std::collections::VecDeque; use std::thread::{self, sleep}; use rand::Rng; use std::time::Duration;fn main() {let list: Arc<Mutex<VecDeque<String>>> Arc::new(Mutex::new(VecDeque::new()));// 创建修改线程le…...
CentOS 7x 使用Docker 安装oracle11g完整方法
1.安装docker-ce 安装依赖的软件包 yum install -y yum-utils device-mapper-persistent-data lvm2添加Docker的阿里云yum源 yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo更新软件包索引 yum makecache fast查看docker…...
DDP算法之线性化和二次近似(Linearization and Quadratic Approximation)
DDP算法线性化和二次近似 在DDP算法中,第三步是线性化系统动力学方程和二次近似代价函数。这一步是关键,它使得DDP能够递归地处理非线性最优控制问题。通过线性化和二次近似,我们将复杂的非线性问题转换为一系列简单的线性二次问题,逐步逼近最优解。通过这些线性化和二次近…...
Shellcode详解
Shellcode详解 一、Shellcode的特点二、Shellcode的类型三、Shellcode的工作原理四、防御措施五、常见的PHP Web Shell示例5.1 简单的命令执行5.2 更复杂的Web Shell5.3 防御措施5.4 实际案例 Shellcode是一种小巧、紧凑的机器代码,通常用于利用软件漏洞或注入攻击中…...
sherpa-onnx说话人识别+语音识别自动开启(VAD)+语音识别Python API
专栏总目录 获取该开源项目的渠道,是我在b站上,看到了由csukuangfj制作的一套语音识别视频。以下地址均为csukuangfj在视频中提供,感谢分享! 新一代 Kaldi: 说话人识别+VAD+语音识别之 Python API_哔哩哔哩_bilibili 开源项目地址:GitHub - k2-fsa/sherpa-onnx: Speech-t…...
提取人脸——OpenCV
提取人脸 导入所需的库创建窗口显示原始图片显示检测到的人脸创建全局变量定义字体对象定义一个函数select_image定义了extract_faces函数设置按钮运行GUI主循环运行显示 导入所需的库 tkinter:用于创建图形用户界面。 filedialog:用于打开文件对话框。 …...
python数据可视化:在图形中添加注释matplotlib.pyplot.annotate()
【小白从小学Python、C、Java】 【考研初试复试毕业设计】 【Python基础AI数据分析】 python数据可视化: 在图形中添加注释 matplotlib.pyplot.annotate() 请问关于以下代码表述正确的选项是? import matplotlib.pyplot as plt x [1, 2, 3, 4, 5] y […...
IDEA debug 调试Evaluate Expression应用
链接: https://blog.csdn.net/xfx_1994/article/details/104136849?utm_mediumdistribute.pc_aggpage_search_result.none-task-blog-2aggregatepagefirst_rank_v2~rank_aggregation-2-104136849.pc_agg_rank_aggregation&utm_termidea%E4%B8%ADevaluate&s…...
04-echarts-立体柱状图扩展
柱状图扩展 一、前言二、思路1、新增面①、在drawShape方法中,新增一个实际左侧面,②、 在drawShape方法中,新增一个实际右侧面,③ 绘制 2、新增series对象① 添加实际值的左侧面和右侧面 三、效果图 一、前言 事情是这样子的&am…...
HTML5 Web Workers: 异步编程的强大力量
在现代Web开发中,随着应用程序变得越来越复杂,用户界面的流畅性和响应性成为了决定用户体验好坏的关键因素之一。传统的JavaScript执行模型中,所有脚本都在同一个线程上运行,这意味着复杂的计算任务会阻塞UI更新,导致页…...
Flutter第十二弹 Flutter多平台运行
目标: 1.在多平台调试启动Flutter程序运行 一、安卓模拟器 1.1 检查当前Flutter适配的版本 flutter doctor提供了Flutter诊断。 $ flutter doctor --verbose /Users/zhouronghua/IDES/flutter/bin/flutter doctor --verbose [✓] Flutter (Channel master, 2.1…...
30天学会QT---------------大项目之在线考试系统
前段时间真的很忙很忙,忙完这段时间,总算是有空来写文章了,开始写的时候我就以为能够有时间准备和写这个,但是发现有时候忙着忙着就忘记了,没有办法来写项目,真的是非常尴尬。 现在有时间了,就有充分的时间来写了。 为了避免笔记断更,我决定先存稿来写。 1、如何规划项…...
搜维尔科技:力反馈主手—手术机器人应用〈腔镜手术机器人平台—进入手术室动物实验〉
力反馈主手—手术机器人应用〈腔镜手术机器人平台—进入手术室动物实验〉 搜维尔科技:力反馈主手—手术机器人应用〈腔镜手术机器人平台—进入手术室动物实验〉...
缓存技术实战[一文讲透!](Redis、Ecache等常用缓存原理介绍及实战)
目录 文章目录 目录缓存简介工作原理缓存分类1.按照技术层次分类2.按照应用场景分类3.按照缓存策略分类 应用场景1.硬件缓存2.软件缓存数据库缓存Web开发应用层缓存 3.分布式缓存4.微服务架构5.移动端应用6.大数据处理7.游戏开发 缓存优点缓存带来的问题 常见常用Java缓存技术1…...
初识es(elasticsearch)
初识elasticsearch 什么是elasticsearch?: 一个开源的分部署搜索引擎、可以用来实现搜索、日志统计、分析、系统监控等功能。 什么是文档和词条? 每一条数据就是一个文档对文档中的内容进行分词,得到的词语就是词条 什么是正向…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
