当前位置: 首页 > news >正文

多目标跟踪中检测器和跟踪器如何协同工作的

多目标跟踪中检测器和跟踪器如何协同工作的

flyfish

主要是两者 接口间的交互

假设

原始图像尺寸:1920(宽)x 1080(高)
模型输入尺寸:640(宽)x 640(高)

检测器处理流程

  1. 读取原始图像
    检测器首先读取一张原始图像,大小是1920x1080。

  2. 预处理
    检测器将原始图像调整大小,使其适合模型的输入尺寸640x640。
    为了保持图像的比例不变,检测器会根据原始图像的宽高比进行缩放。比如,缩放后的图像可能是640x360。如果图像在某个维度没有达到640,检测器会用灰色或其他颜色填充剩余部分,形成640x640的输入图像。
    预处理还包括归一化操作,将图像像素值从0-255缩放到0-1之间,并减去均值、除以标准差等操作。

  3. 模型推理
    将预处理后的图像输入到检测模型中,模型会输出检测结果,这些结果包括每个检测到的目标的边界框(bbox)和置信度分数。

  4. 后处理
    检测器将模型输出的边界框还原到原始图像的尺寸。比如,如果一个目标在640x640的图像中占据了某个位置,检测器会将这个位置转换回1920x1080的尺寸。
    后处理还包括过滤掉置信度较低的检测结果,确保只保留较为准确的检测结果。

检测器输出

  • dets:包含检测到的目标的边界框和置信度分数。

  • img_info:包含原始图像的信息,比如高度、宽度和缩放比例。

跟踪器处理流程

  1. 初始化跟踪器
    在整个视频或序列的处理过程中,只需要初始化一次跟踪器。初始化包括设置以下内容
  • track_thresh:跟踪的阈值。
  • track_buffer:跟踪缓冲区大小。
  • match_thresh:匹配阈值。
  1. 更新跟踪器
    每处理一帧图像时,跟踪器都会接收检测器的输出结果detsimg_info
    检测器的输出结果包括边界框(目标在图像中的位置)和置信度分数。

跟踪器输出

返回的是多目标跟踪表示 online_targets:包含当前帧中所有跟踪目标的信息,包括:

  • 边界框 :目标的当前位置。
  • 置信度 :目标的置信度分数。
  • 身份标识 :目标的唯一标识符。
  • 跟踪状态 :目标是否被激活、丢失或移除。
  • 类别标签 :目标的类别标签。

因为返回的是 单目标跟踪表示的list,所以该对象存储了有关单个轨迹的所有信息,并基于卡尔曼滤波执行状态更新和预测。

还会包括其他信息,根据需要再定是否使用
kalman_filter :用于此特定目标跟踪的卡尔曼滤波器实例。
mean :状态估计的均值向量。
covariance : 状态估计的协方差矩阵。
tracklet_len :轨迹的长度。
frame_id : 当前帧ID。
start_frame :对象首次检测到的帧。
多个单目标跟踪表示,就是多目标跟踪表示。

图像缩放

上面的检测器处理流程 预处理其中一部分是letterbox

使用letterbox处理一张原始图像时,目标是将图像缩放到指定的模型输入大小(640x640)并保持原始图像的宽高比,同时在图像的两侧或上下方添加填充(padding)以达到目标尺寸。

给定原始图像的尺寸为1920x1080(宽度*高度),我们需要将其缩放并添加填充以适应640x640的输入尺寸。

  1. 计算缩放比例 :需要将原始图像的尺寸调整到适合640x640的输入尺寸,保持宽高比。
    宽高比为1920 / 1080 ≈ 1.78。
    输入尺寸640x640的宽高比为1。

由于1920x1080的宽高比大于1,而640x640的宽高比为1,我们需要考虑缩放的限制。

  1. 计算缩放后的尺寸
    由于输入尺寸为640x640,我们可以将宽度缩放到640,这样高度就需要按照相同比例进行缩放:
    缩放比例 = 640 / 1920 ≈ 0.333。
    缩放后的高度 = 1080 * 0.333 ≈ 360。
    因此,缩放后的图像尺寸为640x360。

  2. 添加填充(padding)
    缩放后的图像尺寸为640x360,目标尺寸为640x640。
    需要在图像的顶部和底部添加填充来达到目标尺寸:
    填充的总高度 = 640 - 360 = 280。
    由于填充需要对称地添加在图像的顶部和底部,每边添加的填充为280 / 2 = 140。

因此,原始图像1920x1080经过letterbox处理后,最终的图像尺寸为640x640,其中有效内容为640x360,顶部和底部各有140像素的填充。

相关文章:

多目标跟踪中检测器和跟踪器如何协同工作的

多目标跟踪中检测器和跟踪器如何协同工作的 flyfish 主要是两者 接口间的交互 假设 原始图像尺寸:1920(宽)x 1080(高) 模型输入尺寸:640(宽)x 640(高) 检…...

kali系统几个开机启动项的区别

1、Live system (amd64) 简单的模式 ,启动系统,直接进入 Kali,在系统中的所有的操作和设置都会在下次重启时失效。 Kali 中保存/编辑的所有东西都会重启丢失。 2、Live system (amd64 fail-safe mode) 这种模式与 Live (amd64) 类似&#xf…...

【自撰写】【国际象棋入门】第5课 常见开局战术组合(一)

第5课 常见开局战术组合(一) 本次课中,我们简要介绍几种常见的开局战术组合。开局当中,理想的情况是,己方的两只(或以上)轻子相互配合,或者与己方的兵配合,在完成布局的…...

高考志愿填报选专业,女孩就业率最好的专业有哪些?

高考志愿填报选专业, 大家都会关心:将来怎么就业? 按照目前的环境来说,女孩的就业是不乐观的,在职场上,绝大部分岗位都是男性优先的,至少短期内可能还无法改变,这样就要求我们在大学…...

yolov5模型训练早停模型变大

目录 1. 背景2. 原因分析2.1 train代码分析2.2 strip_optimizer函数分析 3. 验证 1. 背景 最近使用tph-yolov5训练yolov5l-tph-plus模型时,发现模型收敛的差不多了,就果断的停止了训练,结果发现last.pt和best.pt竟然488M,而正常训…...

next是什么???

大家都知道最近出了一个很火的框架,Next.js框架。很多大公司(例如:Tencent腾讯,docker,Uber)的项目都在使用这个Next.js框架。那Next.js到底是一个什么框架呢?Next.js有什么优点呢?今…...

K8s的资源对象

资源对象是 K8s 提供的一些管理和运行应用容器的各种对象和组件。 Pod 资源是 K8s 中的基本部署单元,K8s通过Pod来运行业务应用的容器镜像 Job 和 CronJob 资源用于执行任务和定时任务,DaemonSet 资源提供类似每个节点上守护进程, Deployment…...

OpenStack快速入门

任务一 熟悉OpenStack图形界面操作 1.1 Horizon项目 •各OpenStack服务的图形界面都是由Horizon提供的。 •Horizon提供基于Web的模块化用户界面。 •Horizon为云管理员提供一个整体的视图。 •Horizon为终端用户提供一个自主服务的门户。 •Horizon由云管理员进行管理…...

STM32CubeIDE对STM32F072进行ADC配置及使用

目录 1. 配置2. 时钟3. ADC配置4. 代码补充 1. 配置 引脚配置:PB0 2. 时钟 都是48MHz 3. ADC配置 ADC配置: 开启中断: 4. 代码补充 轮训ADC采样: HAL_ADC_PollForConversion(&hadc,10);ADC采样: HAL_ADC_Start (&a…...

Leetcode Hot 100 刷题记录 - Day 1

问题描述: 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 示…...

k8s学习--Kruise Rollouts 基本使用

文章目录 Kruise Rollouts简介什么是 Kruise Rollouts?核心功能 应用环境一、OpenKruise部署1.安装helm客户端工具2. 通过 helm 安装 二、Kruise Rollouts 安装2. kubectl plugin安装 三、Kruise Rollouts 基本使用(多批次发布)1. 使用Deployment部署应用2.准备Roll…...

PHP框架详解 - CakePHP框架

CakePHP 是一个开源的 PHP Web 应用框架,它遵循 MVC(模型-视图-控制器)设计模式。CakePHP 提供了快速开发的功能,如代码自动生成、数据库交互的 CRUD 操作支持、灵活的路由、模板引擎、表单处理以及其它许多有用的特性22。 CakeP…...

el-cascader 支持多层级,多选(可自定义限制数量),保留最后一级

多功能的 el-cascader 序言:最近遇到一个需求关于级联的,有点东西,这里是要获取某个产品类型下的产品,会存在产品类型和产品在同一级的情况,但是产品类型不能勾选; 情况1(二级菜单是产品&…...

leetcode498 对角线遍历

题目 给你一个大小为 m x n 的矩阵 mat ,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。 示例 输入:mat [[1,2,3],[4,5,6],[7,8,9]] 输出:[1,2,4,7,5,3,6,8,9] 解析 本题目主要考察的就是模拟法,首…...

北京活动会议通常会邀约哪些媒体参会报道?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 北京作为我国的首都和文化中心,各类活动会议资源丰富,吸引了众多媒体的关注。以下是一些通常会被邀约参会报道的重要媒体类型: 国家级新闻机构&#x…...

随心笔记,第六更

目录 一、 三步构建 XML转成java bean 1.XML转XSD 2.XSD转JavaBean 3.jaxb 工具类 4.测试 📢📢📢📣📣📣 哈喽!大家好,我是「Leen」。刚工作几年,想和大家一同进步&am…...

zustand 状态管理库的使用 结合TS

zustand 是一个用于React应用的简单、快速且零依赖的状态管理库。它使用简单的钩子(hooks)API来创建全局状态,使得在组件之间共享状态变得容易。 React学习Day10 基本用法 安装:首先,你需要安装zustand库。 npm insta…...

Maven 的生命周期详解

Maven 是目前最流行的项目管理和构建工具之一,广泛应用于 Java 开发项目中。它通过一系列约定和配置,极大地简化了项目的构建、依赖管理和生命周期管理。其中,Maven 的生命周期是其核心概念之一,贯穿了项目从构建、测试、打包到部…...

【稳定检索/投稿优惠】2024年生物技术与食品科学国际会议(ICBFS 2024)

2024 International Conference on Biotechnology and Food Science 2024年生物技术与食品科学国际会议 【会议信息】 会议简称:ICBFS 2024 大会时间:点击查看 截稿时间:点击查看 大会地点:中国厦门 会议官网:www.icb…...

iOS Category

原理: 【iOS】——分类、扩展和关联对象_ios 为什么分类不能加成员变量-CSDN博客 面试题: 1.Category和Extension区别? 在 Objective-C 中,Category 和 Extension 是两种用于向现有类添加新功能的机制,但它们各有特…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键&#xff…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...

Matlab实现任意伪彩色图像可视化显示

Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中,如何展示好看的实验结果图像非常重要!!! 1、灰度原始图像 灰度图像每个像素点只有一个数值,代表该点的​​亮度(或…...