LeetCode-2779. 数组的最大美丽值【数组 二分查找 排序 滑动窗口】
LeetCode-2779. 数组的最大美丽值【数组 二分查找 排序 滑动窗口】
- 题目描述:
- 解题思路一:滑动窗口与排序
- 解题思路二:0
- 解题思路三:0
题目描述:
给你一个下标从 0 开始的整数数组 nums 和一个 非负 整数 k 。
在一步操作中,你可以执行下述指令:
在范围 [0, nums.length - 1] 中选择一个 此前没有选过 的下标 i 。
将 nums[i] 替换为范围 [nums[i] - k, nums[i] + k] 内的任一整数。
数组的 美丽值 定义为数组中由相等元素组成的最长子序列的长度。
对数组 nums 执行上述操作任意次后,返回数组可能取得的 最大 美丽值。
注意:你 只 能对每个下标执行 一次 此操作。
数组的 子序列 定义是:经由原数组删除一些元素(也可能不删除)得到的一个新数组,且在此过程中剩余元素的顺序不发生改变。
示例 1:
输入:nums = [4,6,1,2], k = 2
输出:3
解释:在这个示例中,我们执行下述操作:
- 选择下标 1 ,将其替换为 4(从范围 [4,8] 中选出),此时 nums = [4,4,1,2] 。
- 选择下标 3 ,将其替换为 4(从范围 [0,4] 中选出),此时 nums = [4,4,1,4] 。
执行上述操作后,数组的美丽值是 3(子序列由下标 0 、1 、3 对应的元素组成)。
可以证明 3 是我们可以得到的由相等元素组成的最长子序列长度。
示例 2:
输入:nums = [1,1,1,1], k = 10
输出:4
解释:在这个示例中,我们无需执行任何操作。
数组 nums 的美丽值是 4(整个数组)。
提示:
1 <= nums.length <= 105
0 <= nums[i], k <= 105
解题思路一:滑动窗口与排序
将每个数x变为一个区间[x-k,x+k],然后排序,判断区间是否有交集:也就是说,要满足
也就是:
class Solution {public int maximumBeauty(int[] nums, int k) {Arrays.sort(nums);int ans = 0;int left = 0;for (int right = 0; right < nums.length; right++) {while (nums[right] - nums[left] > 2 * k) {left++;}ans = Math.max(ans, right - left + 1);}return ans;}
}
时间复杂度:O(nlogn)
空间复杂度:O(1)
解题思路二:0
时间复杂度:O(n)
空间复杂度:O(n)
解题思路三:0
时间复杂度:O(n)
空间复杂度:O(n)

♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠
相关文章:

LeetCode-2779. 数组的最大美丽值【数组 二分查找 排序 滑动窗口】
LeetCode-2779. 数组的最大美丽值【数组 二分查找 排序 滑动窗口】 题目描述:解题思路一:滑动窗口与排序解题思路二:0解题思路三:0 题目描述: 给你一个下标从 0 开始的整数数组 nums 和一个 非负 整数 k 。 在一步操…...

RIP与OSPF发布默认路由(华为)
#交换设备 RIP与OSPF发布默认路由 合理使用默认路由可以很大程度上减少本地路由表的大小,并可以较好的隐藏一个网络中的路由信息,保护自身网络的隐秘性 另外如果在同一个路由器两端使用了不同的路由协议,那么如果不做路由引入或者发布默认…...
Android 一个改善的okHttp封装库
Android Studio 使用前,对于Android Studio的用户,可以选择添加: compile project(‘:okhttputils’) 或者 compile ‘com.zhy:okhttputils:2.0.0’ Eclipse 自行copy源码。 二、基本用法 目前基本的用法格式为: OkHttpUtils .get()…...

瓦罗兰特低价区怎么下载 瓦罗兰特低价区下载教程+免费加速器推荐
瓦罗兰特是由拳头发行的游戏,以其丰富的游戏内容和刺激的竞技体验赢得了广大玩家的喜爱。于其它热门的射击游戏不一样的是,我们在游戏中可以选择不的英雄,每一个英雄都有着自己独特的技能,我们还可以在游戏中强行改变地形帮助我们…...
lspci总结
lspci总结 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨一个在 Linux 系统中常用的命令:lspci。lspci 命令用于列出当前系统中的 P…...
Android开启HTTP服务
需求:通过手机给设备升级固件,设备有WIFI 方案:升级包放到APP可以访问的目录,手机开热点并启动一个HTTP服务,设备连接手机热点,另外,设备端开启一个 telnet 服务,手机通过 telnet 登…...
NLP - word2vec详解
Word2Vec是一种用于将词汇映射到高维向量空间的自然语言处理技术。由Google在2013年提出,它利用浅层神经网络模型来学习词汇的分布式表示。Word2Vec有两种主要模型:CBOW(Continuous Bag of Words)和Skip-gram。 1. 模型介绍 Con…...

AI办公自动化:用通义千问批量翻译长篇英语TXT文档
在deepseek中输入提示词: 你是一个Python编程专家,现在要完成一个编写基于qwen-turbo模型API和dashscope库的程序脚本,具体步骤如下: 打开文件夹:F:\AI自媒体内容\待翻译; 获取里面所有TXT文档ÿ…...

一键解压,无限可能——BetterZip,您的Mac必备神器!
BetterZip for Mac 是一款高效、智能且安全的解压缩软件,专为Mac用户设计。它提供了直观易用的界面,使用户能够轻松应对各种压缩和解压缩需求。 这款软件不仅支持多种压缩格式,如ZIP、RAR、7Z等,还具备快速解压和压缩文件的能力。…...
【数学】什么是最大似然估计?如何求解最大似然估计
背景 最大似然估计(Maximum Likelihood Estimation, MLE)是一种估计统计模型参数的方法。它在众多统计学领域中被广泛使用,比如回归分析、时间序列分析、机器学习和经济学。其核心思想是:给定一个观测数据集,找到一组…...

跟张良均老师学大数据人工智能|企业项目试岗实训开营
我国高校毕业生数量连年快速增长,从2021年的909万人到2022年的1076万人,再到2023年的1158万人,预计到2024年将达到1187万人,2024年高校毕业生数量再创新高。 当年高校毕业生人数不等于进入劳动力市场的高校毕业生人数&#x…...

Pentest Muse:一款专为网络安全人员设计的AI助手
关于Pentest Muse Pentest Muse是一款专为网络安全研究人员和渗透测试人员设计和开发的人工智能AI助手,该工具可以帮助渗透测试人员进行头脑风暴、编写Payload、分析代码或执行网络侦查任务。除此之外,Pentest Muse甚至还能够执行命令行代码并以迭代方式…...

10 SpringBoot 静态资源访问
我们在开发Web项目的时候,往往会有很多静态资源,如html、图片、css等。那如何向前端返回静态资源呢? 以前做过web开发的同学应该知道,我们以前创建的web工程下面会有一个webapp的目录,我们只要把静态资源放在该目录下…...

Unity 之通过自定义协议从浏览器启动本地应用程序
内容将会持续更新,有错误的地方欢迎指正,谢谢! Unity 之通过自定义协议从浏览器启动本地应用程序 TechX 坚持将创新的科技带给世界! 拥有更好的学习体验 —— 不断努力,不断进步,不断探索 TechX —— 心探索、心进…...

Python抓取天气信息
Python的详细学习还是需要些时间的。如果有其他语言经验的,可以暂时跟着我来写一个简单的例子。 2024年最新python教程全套,学完即可进大厂!(附全套视频 下载) (qq.com) 我们计划抓取的数据:杭州的天气信息…...

【超越拟合:深度学习中的过拟合与欠拟合应对策略】
如何处理过拟合 由于过拟合的主要问题是你的模型与训练数据拟合得太好,因此你需要使用技术来“控制它”。防止过拟合的常用技术称为正则化。我喜欢将其视为“使我们的模型更加规则”,例如能够拟合更多类型的数据。 让我们讨论一些防止过拟合的方法。 获…...

【Orange Pi 5与Linux内核编程】-理解Linux内核中的container_of宏
理解Linux内核中的container_of宏 文章目录 理解Linux内核中的container_of宏1、了解C语言中的struct内存表示2、Linux内核的container_of宏实现理解3、Linux内核的container_of使用 Linux 内核包含一个名为 container_of 的非常有用的宏。本文介绍了解 Linux 内核中的 contain…...

003.Linux SSH协议工具
我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…...
web前端组织分析:深入剖析其结构、功能与未来趋势
web前端组织分析:深入剖析其结构、功能与未来趋势 在数字化浪潮的推动下,Web前端组织作为连接用户与数字世界的桥梁,其重要性日益凸显。本文将从四个方面、五个方面、六个方面和七个方面对Web前端组织进行深入分析,揭示其结构特点…...

GitCode热门开源项目推荐:Spider网络爬虫框架
在数字化高速发展时代,数据已成为企业决策和个人研究的重要资源。网络爬虫作为一种强大的数据采集工具受到了广泛的关注和应用。在GitCode这一优秀的开源平台上,Spider网络爬虫框架凭借其简洁、高效和易用性,成为了众多开发者的首选。 一、系…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...