当前位置: 首页 > news >正文

DiffIR: Efficient Diffusion Model for Image Restoration

  • 清华&ETH&字节&UTD
  • https://github.com/Zj-BinXia/DiffIR

问题引入

  • IR任务和image synthesis任务不同点是IR任务本身有一个很强的低质量图片作为先验,所以可以不完全遵循图片生成的范式,本文主要在compact的IPR空间进行DM;
  • 本文提出的模型分为三个部分,1)CPEN(compact IR prior extraction network)来得到IPR(IR prior representation),这个作为回归模型的指导信息;2)DIRformer回归模型,类比为decoder;3)DM来通过LQ图片得到IPR
  • 训练分为两个stage,首先第一个stage训练CPEN和DIRformer,此时CPEN输入的是高质量图片;第二个stage使用的IPR是DM得到的;

methods

在这里插入图片描述

  • stage1: 训练CPEN和DIRformer,首先将gt和LQ concat到一起,然后经过pixelunshuffle得到CPEN的输入,输出IPR Z = C P E N S 1 ( P i x e l U n s h u f f l e ( C o n c a t ( I G T , I L Q ) ) ) , Z ∈ R 4 C ′ Z = CPEN_{S1}(PixelUnshuffle(Concat(I_{GT},I_{LQ}))),Z\in\mathbb{R}^{4C'} Z=CPENS1(PixelUnshuffle(Concat(IGT,ILQ))),ZR4C,之后IPR被送到DIRformer的DGFN和DMTA模块,第一阶段训练的损失是GT和生成HQ的L1损失,超分和inpainting任务还有erceptual loss and adversarial
    loss;
  • DMTA的操作 F ′ = W l 1 Z ⊙ N o r m ( F ) + W l 2 Z F' = W_l^1Z\odot Norm(F) + W_l^2 Z F=Wl1ZNorm(F)+Wl2Z,其中 W l W_l Wl是linear层, F , F ′ F,F' F,F分别是输入和输出的feature map, Q = W d Q W c Q F ′ , K = W d K W c K F ′ , V = W d V W c V F ′ Q = W_d^QW_c^QF',K=W_d^KW_c^KF',V = W_d^VW_c^VF' Q=WdQWcQF,K=WdKWcKF,V=WdVWcVF,其中 W d W_d Wd是depthwise卷积, W c W_c Wc是pointwise卷积,之后被reshape成 Q ^ ∈ R H ^ W ^ × C ^ , K ^ ∈ R C ^ × H ^ W ^ , V ^ ∈ R H ^ W ^ × C ^ \widehat{Q}\in\mathbb{R}^{\widehat{H}\widehat{W}\times\widehat{C}},\widehat{K}\in\mathbb{R}^{\widehat{C}\times\widehat{H}\widehat{W}},\widehat{V}\in\mathbb{R}^{\widehat{H}\widehat{W}\times\widehat{C}} Q RH W ×C ,K RC ×H W ,V RH W ×C ,最后 F ^ = W c V ^ ⋅ S o f t m a x ( K ^ ⋅ Q ^ / γ ) + F \widehat{F}=W_c\widehat{V}\cdot Softmax(\widehat{K}\cdot \widehat{Q}/\gamma)+F F =WcV Softmax(K Q /γ)+F
  • DGFN的操作: F ^ = G E L U ( W d 1 W c 1 F ′ ) ⊙ W d 2 W c 2 F ′ + F \widehat{F}=GELU(W_d^1W_c^1F')\odot W^2_dW_c^2F' + F F =GELU(Wd1Wc1F)Wd2Wc2F+F
  • stage2:同时训练三个部分,首先使用 C P E N S 1 CPEN_{S1} CPENS1得到 Z Z Z,之后经过diffusion process得到 Z T ∈ R 4 C ′ Z_T\in\mathbb{R}^{4C'} ZTR4C C P E N S 2 CPEN_{S2} CPENS2得到 D = C P E N S 2 ( P i x e l U n s h u f f l e ( I L Q ) ) D = CPEN_{S2}(PixelUnshuffle(I_{LQ})) D=CPENS2(PixelUnshuffle(ILQ)),之后进行DM,以D为条件,进行去噪t-1次得到 Z ^ \widehat{Z} Z ,和 C P E N S 1 CPEN_{S1} CPENS1得到的 Z Z Z计算损失 L d i f f = 1 4 C ′ ∑ i = 1 4 C ′ ∣ Z ^ ( i ) − Z ( i ) ∣ L_{diff} = \frac{1}{4C'}\sum_{i = 1}^{4C'}|\widehat{Z}(i) - Z(i)| Ldiff=4C1i=14CZ (i)Z(i),这损失和stage1的损失在一起计算总损失;

实验

相关文章:

DiffIR: Efficient Diffusion Model for Image Restoration

清华&ETH&字节&UTDhttps://github.com/Zj-BinXia/DiffIR 问题引入 IR任务和image synthesis任务不同点是IR任务本身有一个很强的低质量图片作为先验,所以可以不完全遵循图片生成的范式,本文主要在compact的IPR空间进行DM;本文提…...

xss一些笔记

(乱写的一些笔记) innerHTML只防script像是img就不会防 innerText都防 上面代码执行避免用户交互 js也可以用’‘执行 例子 alert’1‘ document.location.hash // #号后的部分,包括#号 document.location.host // 域名…...

以太坊网络中为什么要设置Gas上限

以太坊网络中的Gas上限(Gas Limit)是一个重要的机制,它主要出于以下几个目的: 防止无限循环和拒绝服务攻击(DoS): Gas上限防止了智能合约中的无限循环,这可以保护网络免受恶意合约的…...

vue-cli是什么?和 webpack是什么关系?

前言 Vue CLI是Vue.js项目的官方脚手架,基于Node.js与Webpack构建。安装Vue CLI前需确保Node.js已安装,随后通过npm全局安装。Vue CLI能迅速创建和管理Vue.js项目,提升开发效率。而Webpack则负责资源打包,通过配置文件管理依赖、插…...

leetcode刷题(46-50)

算法是码农的基本功,也是各个大厂必考察的重点,让我们一起坚持写题吧。 遇事不决,可问春风,春风不语,即是本心。 我们在我们能力范围内,做好我们该做的事,然后相信一切都事最好的安排就可以啦…...

[渗透测试学习] Runner-HackTheBox

Runner-HackTheBox 信息搜集 nmap扫描端口 nmap -sV -v 10.10.11.13扫描结果如下 PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.6 (Ubuntu Linux; protocol 2.0) 80/tcp open http nginx 1.18.0 (Ubuntu) 8000…...

keil5显示内存和存储占用百分比进度条工具

简介 [Keil5_disp_size_bar] 以进度条百分比来显示keil编译后生成的固件对芯片的内存ram和存储flash的占用情况, 并生成各个源码文件对ram和flash的占比整合排序后的map信息的表格和饼图。 原理是使用C语言遍历当前目录找到keil工程和编译后生成的map文件 然后读取工程文件和m…...

示例:推荐一个应用Adorner做的消息对话框

一、目的:开发过程中,经常用到对话框,下面演示一个应用Adorner做的带遮盖层蒙版的控件,使用MainWindow的Adorner实现不需要额外定义遮盖层,使用Object作为参数,可自定义DataTemplate定制消息显示样式 二、效…...

Building wheels for collected packages: mmcv, mmcv-full 卡住

安装 anime-face-detector 的时候遇到一个问题:Installation takes forever #1386:在构建mmcv-full时卡住,这里分享下解决方法(安装 mmcv 同理,将下面命令中的 mmcv-full 替换成 mmcv) 具体表现如下&#x…...

可视化表单拖拽生成器优势多 助力流程化办公!

当前,很多企业需要实现流程化办公,进入数字化转型时期。要想实现这一目标,就需要借助更优质的平台产品。低代码技术平台是得到企业喜爱的发展平台,拥有可视化操作、灵活、高效、更可靠等优势特点,在推动企业实现流程化…...

数据集制作——语义分割前png、jpg格式标签图转yolo格式.txt文件(附代码)

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇: 📝《图像去噪》 📝《超分辨率重建》 📝《语义分割》 📝《风格迁移》 📝《目标检测》 📝《暗光增强》 &a…...

机器学习课程复习——ANN

Q:ANN? 基本架构 由输入层、隐藏层、输出层等构建前馈/反馈传播 工作原理 先加权求和:每个神经元的输出是输入加权和的激活再送入激活函数:激活函数的存在使得其能够拟合各类非线性任务 联想:像adaboosting的加权求…...

C++回溯算法(2)

棋盘问题 #include<bits/stdc.h> using namespace std; void func(int,int); bool tf(int,int); void c(); int n,k; char a[110][110]; int cnt20; int main() {cin>>n>>k;for(int i0;i<n;i){for(int j0;j<n;j){cin>>a[i][j];}}func(0,0);cout…...

流量有限、日活低的APP适合对接广告变现吗?

APP广告变现&#xff0c;总用户数和日活用户&#xff08;DUA&#xff09;是衡量APP价值和影响力的重要指标之一。 APP DUA过万&#xff0c;尤其是大几万时&#xff0c;通常具备了商业化价值&#xff0c;适合接入广告变现。日活1W意味着每天有1万名用户在使用这款应用&#xff…...

Shell 学习笔记 - 变量的类型 + 变量的赋值

1.6 Shell 变量的类型 Shell 变量分为四类&#xff0c;分别是 自定义变量环境变量位置变量预定义变量 根据工作要求临时定义的变量称为自定义变量&#xff1b; 环境变量一般是指用 export 内置命令导出的变量&#xff0c;用于定义 Shell 的运行环境&#xff0c;保证 Shell …...

vue播放flv格式的直播流

在ios无法播放&#xff0c;安卓可以 安装 npm install flv.js --save页面 <template><div><videoref"videoElement"style"width: 100%; height: 100%"autoplayplaysinlinemuted></video></div> </template><scr…...

Qt入门小项目 | 实现一个图片查看器

文章目录 一、实现一个图片查看软件 一、实现一个图片查看软件 需要实现的功能&#xff1a; 打开目录选择图片显示图片的名字显示图片 在以上功能的基础上进行优化&#xff0c;需要解决如下问题&#xff1a; 如何记住上次打开的路径&#xff1f; 将路径保存到配置文件中&#x…...

qt仿制qq登录界面

#include "mainwindow.h"MainWindow::MainWindow(QWidget *parent): QMainWindow(parent) {// 设置窗口大小this->resize(window_width, window_heigth);// 固定窗口大小this->setFixedSize(window_width, window_heigth);// 设置窗口图标this->se…...

HashMap详解(含动画演示)

目录 HashMap1、HashMap的继承体系2、HashMap底层数据结构3、HashMap的构造函数①、无参构造②、有参构造1 和 有参构造2 (可以自定义初始容量和负载因子)③、有参构造3(接受一个Map参数)JDK 8之前版本的哈希方法&#xff1a;JDK 8版本的哈希方法 4、拉链法解决哈希冲突什么是拉…...

TVS的原理及选型

目录 案例描述 TVS管的功能与作用&#xff1a; TVS选型注意事项&#xff1a; 高速TVS管选型 最近项目中遇到TVS管选型错误的问题。在此对TVS的功能及选型做一个分享。 案例描述 项目中保护指标应为4-14V&#xff0c;而选型的TVS管位SMJ40CA&#xff0c;其保护电压为40V未…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...