当前位置: 首页 > news >正文

DiffIR: Efficient Diffusion Model for Image Restoration

  • 清华&ETH&字节&UTD
  • https://github.com/Zj-BinXia/DiffIR

问题引入

  • IR任务和image synthesis任务不同点是IR任务本身有一个很强的低质量图片作为先验,所以可以不完全遵循图片生成的范式,本文主要在compact的IPR空间进行DM;
  • 本文提出的模型分为三个部分,1)CPEN(compact IR prior extraction network)来得到IPR(IR prior representation),这个作为回归模型的指导信息;2)DIRformer回归模型,类比为decoder;3)DM来通过LQ图片得到IPR
  • 训练分为两个stage,首先第一个stage训练CPEN和DIRformer,此时CPEN输入的是高质量图片;第二个stage使用的IPR是DM得到的;

methods

在这里插入图片描述

  • stage1: 训练CPEN和DIRformer,首先将gt和LQ concat到一起,然后经过pixelunshuffle得到CPEN的输入,输出IPR Z = C P E N S 1 ( P i x e l U n s h u f f l e ( C o n c a t ( I G T , I L Q ) ) ) , Z ∈ R 4 C ′ Z = CPEN_{S1}(PixelUnshuffle(Concat(I_{GT},I_{LQ}))),Z\in\mathbb{R}^{4C'} Z=CPENS1(PixelUnshuffle(Concat(IGT,ILQ))),ZR4C,之后IPR被送到DIRformer的DGFN和DMTA模块,第一阶段训练的损失是GT和生成HQ的L1损失,超分和inpainting任务还有erceptual loss and adversarial
    loss;
  • DMTA的操作 F ′ = W l 1 Z ⊙ N o r m ( F ) + W l 2 Z F' = W_l^1Z\odot Norm(F) + W_l^2 Z F=Wl1ZNorm(F)+Wl2Z,其中 W l W_l Wl是linear层, F , F ′ F,F' F,F分别是输入和输出的feature map, Q = W d Q W c Q F ′ , K = W d K W c K F ′ , V = W d V W c V F ′ Q = W_d^QW_c^QF',K=W_d^KW_c^KF',V = W_d^VW_c^VF' Q=WdQWcQF,K=WdKWcKF,V=WdVWcVF,其中 W d W_d Wd是depthwise卷积, W c W_c Wc是pointwise卷积,之后被reshape成 Q ^ ∈ R H ^ W ^ × C ^ , K ^ ∈ R C ^ × H ^ W ^ , V ^ ∈ R H ^ W ^ × C ^ \widehat{Q}\in\mathbb{R}^{\widehat{H}\widehat{W}\times\widehat{C}},\widehat{K}\in\mathbb{R}^{\widehat{C}\times\widehat{H}\widehat{W}},\widehat{V}\in\mathbb{R}^{\widehat{H}\widehat{W}\times\widehat{C}} Q RH W ×C ,K RC ×H W ,V RH W ×C ,最后 F ^ = W c V ^ ⋅ S o f t m a x ( K ^ ⋅ Q ^ / γ ) + F \widehat{F}=W_c\widehat{V}\cdot Softmax(\widehat{K}\cdot \widehat{Q}/\gamma)+F F =WcV Softmax(K Q /γ)+F
  • DGFN的操作: F ^ = G E L U ( W d 1 W c 1 F ′ ) ⊙ W d 2 W c 2 F ′ + F \widehat{F}=GELU(W_d^1W_c^1F')\odot W^2_dW_c^2F' + F F =GELU(Wd1Wc1F)Wd2Wc2F+F
  • stage2:同时训练三个部分,首先使用 C P E N S 1 CPEN_{S1} CPENS1得到 Z Z Z,之后经过diffusion process得到 Z T ∈ R 4 C ′ Z_T\in\mathbb{R}^{4C'} ZTR4C C P E N S 2 CPEN_{S2} CPENS2得到 D = C P E N S 2 ( P i x e l U n s h u f f l e ( I L Q ) ) D = CPEN_{S2}(PixelUnshuffle(I_{LQ})) D=CPENS2(PixelUnshuffle(ILQ)),之后进行DM,以D为条件,进行去噪t-1次得到 Z ^ \widehat{Z} Z ,和 C P E N S 1 CPEN_{S1} CPENS1得到的 Z Z Z计算损失 L d i f f = 1 4 C ′ ∑ i = 1 4 C ′ ∣ Z ^ ( i ) − Z ( i ) ∣ L_{diff} = \frac{1}{4C'}\sum_{i = 1}^{4C'}|\widehat{Z}(i) - Z(i)| Ldiff=4C1i=14CZ (i)Z(i),这损失和stage1的损失在一起计算总损失;

实验

相关文章:

DiffIR: Efficient Diffusion Model for Image Restoration

清华&ETH&字节&UTDhttps://github.com/Zj-BinXia/DiffIR 问题引入 IR任务和image synthesis任务不同点是IR任务本身有一个很强的低质量图片作为先验,所以可以不完全遵循图片生成的范式,本文主要在compact的IPR空间进行DM;本文提…...

xss一些笔记

(乱写的一些笔记) innerHTML只防script像是img就不会防 innerText都防 上面代码执行避免用户交互 js也可以用’‘执行 例子 alert’1‘ document.location.hash // #号后的部分,包括#号 document.location.host // 域名…...

以太坊网络中为什么要设置Gas上限

以太坊网络中的Gas上限(Gas Limit)是一个重要的机制,它主要出于以下几个目的: 防止无限循环和拒绝服务攻击(DoS): Gas上限防止了智能合约中的无限循环,这可以保护网络免受恶意合约的…...

vue-cli是什么?和 webpack是什么关系?

前言 Vue CLI是Vue.js项目的官方脚手架,基于Node.js与Webpack构建。安装Vue CLI前需确保Node.js已安装,随后通过npm全局安装。Vue CLI能迅速创建和管理Vue.js项目,提升开发效率。而Webpack则负责资源打包,通过配置文件管理依赖、插…...

leetcode刷题(46-50)

算法是码农的基本功,也是各个大厂必考察的重点,让我们一起坚持写题吧。 遇事不决,可问春风,春风不语,即是本心。 我们在我们能力范围内,做好我们该做的事,然后相信一切都事最好的安排就可以啦…...

[渗透测试学习] Runner-HackTheBox

Runner-HackTheBox 信息搜集 nmap扫描端口 nmap -sV -v 10.10.11.13扫描结果如下 PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.6 (Ubuntu Linux; protocol 2.0) 80/tcp open http nginx 1.18.0 (Ubuntu) 8000…...

keil5显示内存和存储占用百分比进度条工具

简介 [Keil5_disp_size_bar] 以进度条百分比来显示keil编译后生成的固件对芯片的内存ram和存储flash的占用情况, 并生成各个源码文件对ram和flash的占比整合排序后的map信息的表格和饼图。 原理是使用C语言遍历当前目录找到keil工程和编译后生成的map文件 然后读取工程文件和m…...

示例:推荐一个应用Adorner做的消息对话框

一、目的:开发过程中,经常用到对话框,下面演示一个应用Adorner做的带遮盖层蒙版的控件,使用MainWindow的Adorner实现不需要额外定义遮盖层,使用Object作为参数,可自定义DataTemplate定制消息显示样式 二、效…...

Building wheels for collected packages: mmcv, mmcv-full 卡住

安装 anime-face-detector 的时候遇到一个问题:Installation takes forever #1386:在构建mmcv-full时卡住,这里分享下解决方法(安装 mmcv 同理,将下面命令中的 mmcv-full 替换成 mmcv) 具体表现如下&#x…...

可视化表单拖拽生成器优势多 助力流程化办公!

当前,很多企业需要实现流程化办公,进入数字化转型时期。要想实现这一目标,就需要借助更优质的平台产品。低代码技术平台是得到企业喜爱的发展平台,拥有可视化操作、灵活、高效、更可靠等优势特点,在推动企业实现流程化…...

数据集制作——语义分割前png、jpg格式标签图转yolo格式.txt文件(附代码)

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇: 📝《图像去噪》 📝《超分辨率重建》 📝《语义分割》 📝《风格迁移》 📝《目标检测》 📝《暗光增强》 &a…...

机器学习课程复习——ANN

Q:ANN? 基本架构 由输入层、隐藏层、输出层等构建前馈/反馈传播 工作原理 先加权求和:每个神经元的输出是输入加权和的激活再送入激活函数:激活函数的存在使得其能够拟合各类非线性任务 联想:像adaboosting的加权求…...

C++回溯算法(2)

棋盘问题 #include<bits/stdc.h> using namespace std; void func(int,int); bool tf(int,int); void c(); int n,k; char a[110][110]; int cnt20; int main() {cin>>n>>k;for(int i0;i<n;i){for(int j0;j<n;j){cin>>a[i][j];}}func(0,0);cout…...

流量有限、日活低的APP适合对接广告变现吗?

APP广告变现&#xff0c;总用户数和日活用户&#xff08;DUA&#xff09;是衡量APP价值和影响力的重要指标之一。 APP DUA过万&#xff0c;尤其是大几万时&#xff0c;通常具备了商业化价值&#xff0c;适合接入广告变现。日活1W意味着每天有1万名用户在使用这款应用&#xff…...

Shell 学习笔记 - 变量的类型 + 变量的赋值

1.6 Shell 变量的类型 Shell 变量分为四类&#xff0c;分别是 自定义变量环境变量位置变量预定义变量 根据工作要求临时定义的变量称为自定义变量&#xff1b; 环境变量一般是指用 export 内置命令导出的变量&#xff0c;用于定义 Shell 的运行环境&#xff0c;保证 Shell …...

vue播放flv格式的直播流

在ios无法播放&#xff0c;安卓可以 安装 npm install flv.js --save页面 <template><div><videoref"videoElement"style"width: 100%; height: 100%"autoplayplaysinlinemuted></video></div> </template><scr…...

Qt入门小项目 | 实现一个图片查看器

文章目录 一、实现一个图片查看软件 一、实现一个图片查看软件 需要实现的功能&#xff1a; 打开目录选择图片显示图片的名字显示图片 在以上功能的基础上进行优化&#xff0c;需要解决如下问题&#xff1a; 如何记住上次打开的路径&#xff1f; 将路径保存到配置文件中&#x…...

qt仿制qq登录界面

#include "mainwindow.h"MainWindow::MainWindow(QWidget *parent): QMainWindow(parent) {// 设置窗口大小this->resize(window_width, window_heigth);// 固定窗口大小this->setFixedSize(window_width, window_heigth);// 设置窗口图标this->se…...

HashMap详解(含动画演示)

目录 HashMap1、HashMap的继承体系2、HashMap底层数据结构3、HashMap的构造函数①、无参构造②、有参构造1 和 有参构造2 (可以自定义初始容量和负载因子)③、有参构造3(接受一个Map参数)JDK 8之前版本的哈希方法&#xff1a;JDK 8版本的哈希方法 4、拉链法解决哈希冲突什么是拉…...

TVS的原理及选型

目录 案例描述 TVS管的功能与作用&#xff1a; TVS选型注意事项&#xff1a; 高速TVS管选型 最近项目中遇到TVS管选型错误的问题。在此对TVS的功能及选型做一个分享。 案例描述 项目中保护指标应为4-14V&#xff0c;而选型的TVS管位SMJ40CA&#xff0c;其保护电压为40V未…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...