数据集制作——语义分割前png、jpg格式标签图转yolo格式.txt文件(附代码)
💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《暗光增强》
📝《模型优化》
📝《模型实战部署》
目录
- 一、YOLO格式
- 二、实现步骤
- 三、代码
- 3.1 参数修改
- 3.2 代码
- 四、转换结果
- 五、总结
一、YOLO格式
YOLO格式的数据集通常包含两部分:图像文件和对应的文本标注文件。每个文本标注文件中包含了图像中每个物体的类别和位置信息。每一行代表一个物体,格式如下:
<class_id> <x_center> <y_center> <width> <height>
其中,<class_id>是物体类别的ID,<x_center>和<y_center>是物体中心点的坐标,和是物体的宽度和高度。所有的坐标和尺寸都需要被归一化,即除以图像的宽度和高度,因此它们的值都在0到1之间。
二、实现步骤
要将.png格式的标签图转换为YOLO格式的.txt文件,需要以下步骤:
(1)读取.png标签图,每个物体应该被标记为不同的颜色;
(2)解析标签图,对每种颜色进行遍历,找出所有像素点的坐标;
(3)对每种颜色的像素点坐标进行分析,计算出对应的bounding box(通过找到最小和最大的x,y坐标来实现);
(4)将bounding box的坐标和尺寸归一化,然后保存为.txt文件。
三、代码
3.1 参数修改
3.2 代码
注:.png格式个标签图像,必须是单通道图像。
import os
import cv2
import numpy as npdef convert_segmentation_to_yolo(img_path, output_path, num_classes):# 读取标签图img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)height, width = img.shape# 创建用于存储YOLO格式的列表yolo_labels = []# 遍历每个类别for class_id in range(num_classes):# 找到当前类别的所有像素位置class_pixels = np.where(img == class_id)# 如果当前类别不存在,跳过if len(class_pixels[0]) == 0:continue# 找到类别的最小和最大边界x_min = np.min(class_pixels[1])x_max = np.max(class_pixels[1])y_min = np.min(class_pixels[0])y_max = np.max(class_pixels[0])# 计算中心点和宽高,并归一化x_center = (x_min + x_max) / 2 / widthy_center = (y_min + y_max) / 2 / heightbbox_width = (x_max - x_min) / widthbbox_height = (y_max - y_min) / height# 保存YOLO格式的标签yolo_labels.append(f"{class_id} {x_center} {y_center} {bbox_width} {bbox_height}")# 将YOLO标签写入.txt文件txt_file = os.path.splitext(os.path.basename(img_path))[0] + ".txt"with open(os.path.join(output_path, txt_file), "w") as f:for label in yolo_labels:f.write(label + "\n")# 示例调用
# img_folder = 'path/to/your/png/folder'
# output_folder = 'path/to/your/txt/folder'
img_folder = 'Images/Segment_Images/image_png'
output_folder = 'Images/Segment_Images/label_txt'
# num_classes = 21 # 假设有21个类别
num_classes = 2 # 假设有21个类别if not os.path.exists(output_folder):os.makedirs(output_folder)# 遍历标签图文件夹并转换
for img_file in os.listdir(img_folder):if img_file.endswith('.png'):img_path = os.path.join(img_folder, img_file)convert_segmentation_to_yolo(img_path, output_folder, num_classes)
四、转换结果
下面是原始的png格式标签图和转换后的yolo格式.txt文件。
五、总结
以上就是语义分割前png、jpg格式标签图转yolo格式.txt文件的详细过程,希望能帮到你!
感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖
关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!
相关文章:

数据集制作——语义分割前png、jpg格式标签图转yolo格式.txt文件(附代码)
💪 专业从事且热爱图像处理,图像处理专栏更新如下👇: 📝《图像去噪》 📝《超分辨率重建》 📝《语义分割》 📝《风格迁移》 📝《目标检测》 📝《暗光增强》 &a…...

机器学习课程复习——ANN
Q:ANN? 基本架构 由输入层、隐藏层、输出层等构建前馈/反馈传播 工作原理 先加权求和:每个神经元的输出是输入加权和的激活再送入激活函数:激活函数的存在使得其能够拟合各类非线性任务 联想:像adaboosting的加权求…...

C++回溯算法(2)
棋盘问题 #include<bits/stdc.h> using namespace std; void func(int,int); bool tf(int,int); void c(); int n,k; char a[110][110]; int cnt20; int main() {cin>>n>>k;for(int i0;i<n;i){for(int j0;j<n;j){cin>>a[i][j];}}func(0,0);cout…...
流量有限、日活低的APP适合对接广告变现吗?
APP广告变现,总用户数和日活用户(DUA)是衡量APP价值和影响力的重要指标之一。 APP DUA过万,尤其是大几万时,通常具备了商业化价值,适合接入广告变现。日活1W意味着每天有1万名用户在使用这款应用ÿ…...
Shell 学习笔记 - 变量的类型 + 变量的赋值
1.6 Shell 变量的类型 Shell 变量分为四类,分别是 自定义变量环境变量位置变量预定义变量 根据工作要求临时定义的变量称为自定义变量; 环境变量一般是指用 export 内置命令导出的变量,用于定义 Shell 的运行环境,保证 Shell …...
vue播放flv格式的直播流
在ios无法播放,安卓可以 安装 npm install flv.js --save页面 <template><div><videoref"videoElement"style"width: 100%; height: 100%"autoplayplaysinlinemuted></video></div> </template><scr…...

Qt入门小项目 | 实现一个图片查看器
文章目录 一、实现一个图片查看软件 一、实现一个图片查看软件 需要实现的功能: 打开目录选择图片显示图片的名字显示图片 在以上功能的基础上进行优化,需要解决如下问题: 如何记住上次打开的路径? 将路径保存到配置文件中&#x…...

qt仿制qq登录界面
#include "mainwindow.h"MainWindow::MainWindow(QWidget *parent): QMainWindow(parent) {// 设置窗口大小this->resize(window_width, window_heigth);// 固定窗口大小this->setFixedSize(window_width, window_heigth);// 设置窗口图标this->se…...

HashMap详解(含动画演示)
目录 HashMap1、HashMap的继承体系2、HashMap底层数据结构3、HashMap的构造函数①、无参构造②、有参构造1 和 有参构造2 (可以自定义初始容量和负载因子)③、有参构造3(接受一个Map参数)JDK 8之前版本的哈希方法:JDK 8版本的哈希方法 4、拉链法解决哈希冲突什么是拉…...

TVS的原理及选型
目录 案例描述 TVS管的功能与作用: TVS选型注意事项: 高速TVS管选型 最近项目中遇到TVS管选型错误的问题。在此对TVS的功能及选型做一个分享。 案例描述 项目中保护指标应为4-14V,而选型的TVS管位SMJ40CA,其保护电压为40V未…...
【机器学习】无监督学习:探索数据背后的隐藏模式
在机器学习的广阔领域中,监督学习因其直观的训练方式和广泛的应用场景,往往受到更多的关注。然而,随着数据量和数据类型的不断增长,无监督学习的重要性日益凸显。本文将详细介绍无监督学习的理论基础、常用算法及其在实际中的应用…...
使用Elasticsearch在同一索引中区分不同类型的文档
在使用Elasticsearch时,有时我们需要在同一个索引中存放不同类型的文档,并且这些文档的字段可能不一致。在早期版本中,我们可以使用types来实现,但在Elasticsearch 7.x及更高版本中,types概念已被弃用。本文将介绍如何…...

驾校在线考试系统源码 手机+PC+平板自适应
Thinkphp在线考题源码 驾校在线考试系统 手机PC平板 自适应,机动车驾驶培训学校驾校类网站源码带手机端 运行环境:phpmysql 内附安装说明 驾校在线考试系统源码 手机PC平板自适应...
c++的多态,继承,抽象类,虚函数表,虚函数等题目+分析
目录 题目 代码题 分析 主观题 题目 代码题 class A { public:virtual void func(int val 1) {std::cout << "A->" << val << std::endl;}virtual void test() { func(); } };class B : public A { public:void func(int val 0) { std…...

利用 Qwen-VL 进行私有化部署第一个 AI 多模态大模型
Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…...

王思聪隐形女儿曝光
王思聪"隐形"女儿曝光!黄一鸣独自面对怀孕风波,坚持生下爱情结晶近日,娱乐圈掀起了一场惊天波澜!前王思聪绯闻女友黄一鸣在接受专访时,大胆揭露了她与王思聪之间的爱恨纠葛,并首度公开承认&#…...

学习笔记——网络管理与运维——SNMP(SNMP原理)
四、SNMP原理 SNMP的工作原理基于客户端-服务器模型。其中,网络管理系统是客户端,而网络设备是服务器。客户端向服务器发送请求消息(即"Get"或"Set"命令)来获取或修改服务器的信息。服务器收到请求消息后,会返回相应的响…...

基于STM32和人工智能的自动驾驶小车系统
目录 引言环境准备自动驾驶小车系统基础代码实现:实现自动驾驶小车系统 4.1 数据采集模块4.2 数据处理与分析4.3 控制系统4.4 用户界面与数据可视化应用场景:自动驾驶应用与优化问题解决方案与优化收尾与总结 1. 引言 随着人工智能和嵌入式系统技术的…...

简单介绍vim
文章目录 前言一、Vim的特点二、安装Vim三、设置Vim配置文件的位置:编辑配置文件:添加配置选项:保存并退出编辑器:快速配置验证设置: 总结 前言 Vim是一款强大的文本编辑器,被广泛用于各种编程和文本编辑任…...
使用本地数据对transformers模型进行微调训练
模型 transformers模型是使用比较多的模型,奈何各个都是体积大,找了一个使用人多不是很大的模型进行训练。 需要魔法 bert-base-uncased模型仓库地址 huggingface下的所有仓库都是git的,也就意味着你可以使用 git clone 可以下载仓库内所有的…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...