当前位置: 首页 > news >正文

Glide 缓存机制研究及同命名图片的替换回显

背景:

相册-图片后处理场景,需要先展示一张原图,同时后台对图片进行算法优化,完成优化之后无缝替换原图展示,同时保证后续都展示算法优化后的图片

图片加载采用 Glide 库实现

画重点:

  1. 相册场景:意味着存在图片缓存的复用

  2. 无缝替换:切换过程要很丝滑,不能有闪烁等现象

  3. 后续展示优化后的图片:说明后续缓存要复用算法优化后的,不能用原图

  4. 因为是对图片进行优化,所以原图和算法优化后的图片文件名一样

最开始的想法:

步骤:

  1. 先加载原图展示

  2. 等图片算法优化,重新调用 glide 加载一遍

结果:

  1. 重新加载之后,还是原图效果

Glide 缓存机制

基于上述原因,专门研究了下 Glide 的缓存机制,重点是缓存的读取这一块

四级缓存机制

Glide 采用四级缓存机制,主要分成两个模块,内存缓存,硬盘缓存

  • 内存缓存:防止应用重复将图片数据读到内存中
  • 硬盘缓存:防止应用重复从网络或者其他地方重复下载和读取数据
  • 缓存Key:既然有缓存,那肯定需要对应的缓存Key,通过按照一定规则生成缓存key之后,根据key从缓存集中取出对应缓存复用

这里先简单讲下四级缓存机制,然后再跟着源码过一遍

内存缓存-lru缓存:

Glide 在内存中维持的一个缓存 map,通过 lru 算法实现内存管理

private final LinkedHashMap<T, Y> cache = new LinkedHashMap<T, Y>(100, 0.75f, true);
​
T:缓存Key
Y:缓存资源

内存缓存-弱引用缓存:

Glide 在内存中维持的一个弱引用缓存 map,由于是弱引用,这就意味着内存不足的时候先销毁这个

private final Map<Key, WeakReference<EngineResource<?>>> activeResources;

硬盘缓存-转换过缓存:

Glide 在硬盘上的缓存,该缓存是经过各种变换后的缓存,不是原始图片

硬盘缓存-原始图片缓存:

Glide 在硬盘上的缓存,该缓存是原始图片缓存

Glide 缓存加载流程:

public <T, Z, R> LoadStatus load(Key signature, int width, int height, DataFetcher<T> fetcher,DataLoadProvider<T, Z> loadProvider, Transformation<Z> transformation, ResourceTranscoder<Z, R> transcoder,Priority priority, boolean isMemoryCacheable, DiskCacheStrategy diskCacheStrategy, ResourceCallback cb) {Util.assertMainThread();long startTime = LogTime.getLogTime();
​final String id = fetcher.getId();// 1. 生成 缓存key,可以看出 key 的生成用到很多参数,比如 id(图片路径)、signature、width、height,还有 transformationEngineKey key = keyFactory.buildKey(id, signature, width, height, loadProvider.getCacheDecoder(),loadProvider.getSourceDecoder(), transformation, loadProvider.getEncoder(),transcoder, loadProvider.getSourceEncoder());
​// 2. 先从内存缓存-lru缓存中拿缓存,如果拿到缓存调用 onResourceReadyEngineResource<?> cached = loadFromCache(key, isMemoryCacheable);if (cached != null) {cb.onResourceReady(cached);if (Log.isLoggable(TAG, Log.VERBOSE)) {logWithTimeAndKey("Loaded resource from cache", startTime, key);}return null;}// 3. 内存缓存-lru中没有缓存,则从弱引用缓存中拿,如果拿到调用 onResourceReadyEngineResource<?> active = loadFromActiveResources(key, isMemoryCacheable);if (active != null) {cb.onResourceReady(active);if (Log.isLoggable(TAG, Log.VERBOSE)) {logWithTimeAndKey("Loaded resource from active resources", startTime, key);}return null;}// 4. 内存缓存-弱引用中也没有缓存,从硬盘缓存中拿或加载文件地址,不管是拿硬盘缓存还是加载文件,涉及到IO操作,需要子线程处理EngineJob current = jobs.get(key);if (current != null) {current.addCallback(cb);if (Log.isLoggable(TAG, Log.VERBOSE)) {logWithTimeAndKey("Added to existing load", startTime, key);}return new LoadStatus(cb, current);}
​EngineJob engineJob = engineJobFactory.build(key, isMemoryCacheable);DecodeJob<T, Z, R> decodeJob = new DecodeJob<T, Z, R>(key, width, height, fetcher, loadProvider, transformation,transcoder, diskCacheProvider, diskCacheStrategy, priority);EngineRunnable runnable = new EngineRunnable(engineJob, decodeJob, priority);jobs.put(key, engineJob);engineJob.addCallback(cb);engineJob.start(runnable);
​if (Log.isLoggable(TAG, Log.VERBOSE)) {logWithTimeAndKey("Started new load", startTime, key);}return new LoadStatus(cb, engineJob);
}

内存缓存-lru缓存中拿缓存:

private EngineResource<?> loadFromCache(Key key, boolean isMemoryCacheable) {if (!isMemoryCacheable) {return null;}// 如果从 lru 中能拿到缓存,将该缓存从 lru 缓存中移除,并存入 弱引用缓存EngineResource<?> cached = getEngineResourceFromCache(key);if (cached != null) {cached.acquire();activeResources.put(key, new ResourceWeakReference(key, cached, getReferenceQueue()));}return cached;
}

从硬盘缓存中拿或加载文件地址:

private Resource<?> decode() throws Exception {// 这里有个策略判断,只有支持硬盘缓存策略,才能从硬盘中拿缓存if (isDecodingFromCache()) {// 从硬盘缓存中拿return decodeFromCache();} else {// 加载文件return decodeFromSource();}
}​
// 从硬盘缓存中拿
private Resource<?> decodeFromCache() throws Exception {Resource<?> result = null;try {// 5. 从硬盘缓存-转换过缓存中拿result = decodeJob.decodeResultFromCache();} catch (Exception e) {if (Log.isLoggable(TAG, Log.DEBUG)) {Log.d(TAG, "Exception decoding result from cache: " + e);}}
​if (result == null) {// 6. 硬盘缓存-转换过缓存中拿不到,从原始图片缓存中拿result = decodeJob.decodeSourceFromCache();}return result;
}
​
// 从硬盘缓存-转换过缓存中拿
public Resource<Z> decodeResultFromCache() throws Exception {if (!diskCacheStrategy.cacheResult()) {return null;}
​long startTime = LogTime.getLogTime();Resource<T> transformed = loadFromCache(resultKey);if (Log.isLoggable(TAG, Log.VERBOSE)) {logWithTimeAndKey("Decoded transformed from cache", startTime);}startTime = LogTime.getLogTime();Resource<Z> result = transcode(transformed);if (Log.isLoggable(TAG, Log.VERBOSE)) {logWithTimeAndKey("Transcoded transformed from cache", startTime);}return result;
}
​
// 从硬盘缓存-原始图片缓存中拿
public Resource<Z> decodeSourceFromCache() throws Exception {if (!diskCacheStrategy.cacheSource()) {return null;}
​long startTime = LogTime.getLogTime();// 这里值得注意的是,这里用的key和其他三个缓存中用到的不一样,这里用的是 resultKey.getOriginalKey() 就是原始图片地址,不过也能理解,加载原始图片缓存,也不需要额外的key信息,只需要文件地址就行了Resource<T> decoded = loadFromCache(resultKey.getOriginalKey());if (Log.isLoggable(TAG, Log.VERBOSE)) {logWithTimeAndKey("Decoded source from cache", startTime);}return transformEncodeAndTranscode(decoded);
}

理完Glide的加载机制之后,就很好理解为什么重新加载之后还是原图,所以进行了优化

优化方案二

加载原图时:

glideOptions = new RequestOptions().signature(new ObjectKey(signatureKey));

加载优化后图片时:

glideOptions = new RequestOptions();

加载原图时多调用了 signature 方法,这样加载优化后图片时,由于和加载原图时的缓存key不一样,会重新进行加载

优化方案二解决了优化图片不加载问题,但是由于重新加载图片,会导致切换过程出现很明显的闪烁,这里可以通过 placeholder 方法优化

优化方案三

// 1. 获取当前 imageView 的 drawable
Drawable drawable = imageView.getDrawable();
Bitmap placeholderBitmap = null;
// 2. drawable 转成 bitmap
if(drawable instanceof BitmapDrawable){placeholderBitmap = ((BitmapDrawable) drawable).getBitmap();
}
// 3. 由于 imageView 的 drawable 可能会被回收,所以需要将 bitmap 重新 clone 一份
Bitmap copiedBitmap = null;
if(placeholderBitmap != null){copiedBitmap = placeholderBitmap.copy(placeholderBitmap.getConfig(), true);
}
// 4. 将 bitmap 作为 占位符传入
if(copiedBitmap != null && !copiedBitmap.isRecycled()){glideOptions = new RequestOptions().frame(0).placeholder(new BitmapDrawable(context.getResources(), copiedBitmap)).override(size.getWidth(), size.getHeight());
}else {glideOptions = new RequestOptions().frame(0).override(size.getWidth(), size.getHeight());
}

至此,效果实现!

相关文章:

Glide 缓存机制研究及同命名图片的替换回显

背景&#xff1a; 相册-图片后处理场景&#xff0c;需要先展示一张原图&#xff0c;同时后台对图片进行算法优化&#xff0c;完成优化之后无缝替换原图展示&#xff0c;同时保证后续都展示算法优化后的图片 图片加载采用 Glide 库实现 画重点&#xff1a; 相册场景&#xff…...

一键简易桌签(带背景)-Word插件-大珩助手

问题整理&#xff1a; 如何Word中设计简易桌签&#xff1f;如何设置带背景图的桌签&#xff1f; Word大珩助手是一款功能丰富的Office Word插件&#xff0c;旨在提高用户在处理文档时的效率。它具有多种实用的功能&#xff0c;能够帮助用户轻松修改、优化和管理Word文件&…...

如何解决centos停止维护后更换Debian11平替?

再有9天时间centos7.x就将停止维护,最近很多人已经再更换系统了!有推荐alibabacloud,opencloud,debian,ubuntu,centos-stream,tencentos,anolis,rockey,almal,oracle,arch,Fedora,opensuse 很多人不知道选什么,这里就主要介绍一下 如果你是使用宝塔面板 并且想要无缝衔…...

服务器雪崩的应对策略之----熔断机制

熔断机制&#xff08;Circuit Breaker&#xff09;是一种保护系统稳定性的重要手段。它的主要目的是防止系统在依赖的服务出现问题时&#xff0c;继续发送请求&#xff0c;从而保护系统免受进一步的影响。熔断机制通过监控请求的成功和失败率&#xff0c;在检测到故障率超过预设…...

RestClient操作索引库和文档

导入依赖&#xff1a; <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId><version>7.12.1</version></dependency>导入依赖成功之后就可以开始我们的测…...

【设计模式深度剖析】【11】【行为型】【解释器模式】| 以算术表达式求值为例加深理解

&#x1f448;️上一篇:状态模式 设计模式-专栏&#x1f448;️ 文章目录 解释器模式定义英文原话直译 解释器模式中的角色1. 抽象表达式&#xff08;AbstractExpression&#xff09;2. 终端表达式&#xff08;TerminalExpression&#xff09;3. 非终端表达式&#xff08;Non…...

MySQL8,Navicat能登陆成功,密码却忘记了

执行成功的图&#xff1a; 以下为步骤&#xff1a;本文一共8个简单步骤。 环境&#xff1a;mysql8、window10、navicat11 1、打开本地电脑window10的命令窗&#xff08;俗称黑窗口&#xff09;&#xff0c;windowR 2、输入regegit&#xff0c;回车&#xff0c;打开注册表 3、…...

游戏中的寻路算法研究

1)Unity NavMesh研究 思考&#xff1a;毫无疑问&#xff0c;unity中自带的navmesh寻路是比较健全的&#xff0c;无奈在服务器中无法使用&#xff0c;这样子我们没办法做怪的导航&#xff0c;但是可以先体验下都有哪些api&#xff0c;并且可以可视化的看效果。 1)打开导航网格…...

【AWS SMB】关于AWS 中小型企业 (SMB) 能力介绍及注意事项

文章目录 前言一、什么是 SMB&#xff1f;&#x1f4e2;二、如何识别中小企业的需求三、中小企业营销活动的类型四、AWS 合作伙伴可获得的其他 AWS 机会4.1 AWS IQ4.2 APN 客户参与 (ACE) 计划 前言 AWS 中小型企业 &#xff08;SMB&#xff09; 能力合作伙伴专注于帮助中小型…...

中年之恋:重返青春的旅程

第一章&#xff1a;重逢 在一个普通的周末&#xff0c;李明参加了一次由老同学组织的聚会&#xff0c;尽管他对此并不抱有太大的兴趣&#xff0c;但出于礼貌还是选择了出席。聚会在一家风格复古的咖啡馆里举行&#xff0c;暖黄色的灯光与木质的装饰让人不自觉地放缓了脚步。在…...

人工智能中的监督学习和无监督学习

欢迎来到 Papicatch的博客 目录 &#x1f349;引言 &#x1f349;监督学习 &#x1f348;基本思想 &#x1f348;具体过程 &#x1f34d;数据收集 &#x1f34d;数据预处理 &#x1f34d;模型选择 &#x1f34d;模型训练 &#x1f34d;模型评估 &#x1f34d;模型部署…...

深度学习500问——Chapter12:网络搭建及训练(1)

文章目录 12.1 TensorFlow 12.1.1 TensorFlow 是什么 12.1.2 TensorFlow的设计理念是什么 12.1.3 TensorFlow特点有哪些 12.1.4 TensorFlow的系统架构是怎样的 12.1.5 TensorFlow编程模型是怎样的 12.1.6 如何基于TensorFlow搭建VGG16 12.1 TensorFlow 12.1.1 TensorFlow 是什…...

HuggingFace CLI 命令全面指南

文章目录 安装与认证1.1 安装 HuggingFace Hub 库使用 pip 安装使用 conda 安装验证安装 1.2 认证与登录生成访问令牌使用访问令牌登录环境变量认证验证认证 下载文件2.1 下载单个文件安装 huggingface_hub 库认证与登录下载单个文件 2.2 下载特定版本的文件下载特定版本的文件…...

FreeRTOS源码分析

目录 1、FreeRTOS目录结构 2、核心文件 3、移植时涉及的文件 4、头文件相关 4.1 头文件目录 4.2 头文件 5、内存管理 6、入口函数 7、数据类型和编程规范 7.1 数据类型 7.2 变量名 7.3 函数名 7.4 宏的名 1、FreeRTOS目录结构 使用 STM32CubeMX 创建的 FreeRTOS 工…...

python实战:将视频内容上传到社交媒体平台

在Python中&#xff0c;上传视频到不同的平台可能需要使用不同的API和库。以下是一些常见的平台以及如何使用Python进行上传的示例&#xff1a; YouTube: 使用Google提供的YouTube Data API。 首先&#xff0c;你需要从Google Cloud控制台获取API密钥&#xff0c;并安装google-…...

【深度学习】sdwebui A1111 加速方案对比,xformers vs Flash Attention 2

文章目录 资料支撑资料结论sdwebui A1111 速度对比测试sdxlxformers 用contorlnet sdxlsdpa&#xff08;--opt-sdp-no-mem-attention&#xff09; 用contorlnet sdxlsdpa(--opt-sdp-attention) 用contorlnet sdxl不用xformers或者sdpa ,用contorlnet sdxl不用xformers或者sdpa …...

5分钟了解单元测试

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 一、什么是单元测试&#xff1f; 单元测试是指&#xff0c;对软件中的最小可测试单元在与程序其…...

VSCode之C/C++插件之宏定义导致颜色变暗

这是因为该宏没有定义或者定义在makefile文件中导致无法被插件识别到&#xff0c;导致误判了 索性将该机制去了&#xff0c;显示也会好看些&#xff0c;如下将C_Cpp下的Dim Inactive Regions勾去了 显示效果会好很多。...

自然语言处理概述

目录 1.概述 2.背景 3.作用 4.优缺点 4.1.优点 4.2.缺点 5.应用场景 5.1.十个应用场景 5.2.文本分类 5.2.1.一般流程 5.2.2.示例 6.使用示例 7.总结 1.概述 自然语言处理&#xff08;NLP&#xff09;是计算机科学、人工智能和语言学的交叉领域&#xff0c;旨在实…...

用Rust和Pingora轻松构建超越Nginx的高效负载均衡器

目录 什么是Pingora&#xff1f;实现过程 初始化项目编写负载均衡器代码代码解析部署 总结 1. 什么是Pingora&#xff1f; Pingora 是一个高性能的 Rust 库&#xff0c;用于构建可负载均衡器的代理服务器&#xff0c;它的诞生是为了弥补 Nginx 存在的缺陷。 Pingora 提供了…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...

边缘计算网关提升水产养殖尾水处理的远程运维效率

一、项目背景 随着水产养殖行业的快速发展&#xff0c;养殖尾水的处理成为了一个亟待解决的环保问题。传统的尾水处理方式不仅效率低下&#xff0c;而且难以实现精准监控和管理。为了提升尾水处理的效果和效率&#xff0c;同时降低人力成本&#xff0c;某大型水产养殖企业决定…...

2025.6.9总结(利与弊)

凡事都有两面性。在大厂上班也不例外。今天找开发定位问题&#xff0c;从一个接口人不断溯源到另一个 接口人。有时候&#xff0c;不知道是谁的责任填。将工作内容分的很细&#xff0c;每个人负责其中的一小块。我清楚的意识到&#xff0c;自己就是个可以随时替换的螺丝钉&…...