当前位置: 首页 > news >正文

吴恩达机器学习 第二课 week2 多分类问题

目录

01 学习目标

02 实现工具

03 概念与原理

04 应用示例

05 总结


01 学习目标

     (1)理解二分类与多分类的原理区别

     (2)掌握简单多分类问题的神经网络实现方法

     (3)理解多分类问题算法中的激活函数与损失函数原理

02 实现工具

     (1)代码运行环境

              Python语言,Jupyter notebook平台

     (2)所需模块

              numpy,matplotlib,tensorflow,lab_utils_multiclass_TF,logging

03 概念与原理

     (1)二分类&多分类

       二分类将输入数据划分为两个不同类别,目标变量为一维(0或1)。比如:判断一封电子邮件是否为垃圾邮件(是/否)、判断一个用户是否会点击某个广告或链接(会/不会)等。

       多分类将输入数据划分为三个及以上不同类别,目标变量为一维或更高维。比如:图像识别、文本分类等。

       二分类与多分类都是分类问题,本质上都是经过逻辑分析进行处理。相较二分类的“一对一(0&1)”逻辑,多分类多了一层逻辑,其逻辑处理有“一对一(0或1)”和“一对多(0&1/2/3/4…)”两种策略。如下图所示:

图1   “一对一”策略

 图2   “一对多”策略

       由图1和2可知,假设目标有n类,“一对一”策略需要n×(n-1)次分类,而“一对多”策略仅需要n次分类。

      (2)神经网络中的激活函数 & 归一化指数函数(SoftMax函数)

         激活函数负责将神经元的输入映射到输出端,位于隐藏层的神经元内。作用:引入非线性以处理现实复杂问题。

         SoftMax函数负责处理输出层神经元的输出结果,位于模型编译过程中、损失函数内。作用:将输出层数值处理为 [0,1]范围内的概率分布,用于预测。

      (3)SoftMax函数及其损失函数的数学原理

        对于输出结果向量\textbf{z}=[z_1,z_2,\cdots ,z_n]^TSoftMax函数:

\textbf{a}=\frac{1}{\sum_{k=1}^{n}e^{z_k}}\begin{bmatrix} e^{z_1}\\ e^{z_2}\\ \cdots \\ e^{z_n} \end{bmatrix}

        对于SoftMax处理后的数值,采用交叉熵损失函数:

 L(\textbf{a},y)=\left\{\begin{matrix} -log(a_1),\textbf{if} y=1\\ -log(a_2),\textbf{if} y=2\\ \cdots \\ -log(a_n),\textbf{if} y=n \end{matrix}\right.

       成本函数:

J(\textbf{w},b)=-[\sum_{i=1}^{m}\sum_{j=1}^{n}\begin{Bmatrix} y^{(i)}==j \end{Bmatrix}log\frac{e^{z^{(i)}_j}}{\sum_{k=1}^{n}e^{z^{(i)}_k}}]

      然而,实际项目中可能遇到比较大的数值,SoftMax函数第1步会先进行指数计算(即e^x),这往往造成内存溢出无法计算。因此,可对SoftMax函数及其损失函数进行算法优化:

      本质为取C=\textbf{z}_{max}进行归一化预处理,具体推导过程如下:

       优化后的SoftMax函数如下:

\textbf{a}=\frac{1}{\sum_{k=1}^{n}e^{z_k-C}}\begin{bmatrix} e^{z_1-C}\\ e^{z_2-C}\\ \cdots \\ e^{z_n-C} \end{bmatrix}

       优化后的第k类的损失函数为:

L(\textbf{z})=C+log(\sum_{i=1}^{n}e^{z_i-C})-z_k

       式中,C=\textbf{z}_{max}k为目标值(类别),即y=k,总共有n类。

04 应用示例

     (1)示例描述

       采用sklearn库中的make_blobs函数随机生成4类共2000个数据点,然后基于这4类数据,采用人工神经网络对其进行分类并可视化。

    (2)代码实现

      第1步,导入所需模块:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib widget
from sklearn.datasets import make_blobs
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
np.set_printoptions(precision=2)
from lab_utils_multiclass_TF import *
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)

      第2步,生成数据:

centers = [[-5, 2], [-2, -2], [1, 2], [5, -2]]  # 4个类中心
X_train, y_train = make_blobs(n_samples=2000, centers=centers, cluster_std=1.0,random_state=30)

      第3步,定义框架、编译模型、训练模型:

model = Sequential([ Dense(25, activation = 'relu'),Dense(15, activation = 'relu'),Dense(4, activation = 'linear')    # < softmax activation here]
)
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),optimizer=tf.keras.optimizers.Adam(0.001),
)model.fit(X_train,y_train,epochs=100
)

     第4步,结果显示:

plt_cat_mc(X_train, y_train, model, 4)

       运行以上代码,结果如下:

05 总结

     (1)多分类的本质是二分类,基本原理是逻辑回归。

     (2)采用Softmax需在损失函数中定义,并需输出层以激活函数linear配合。

     (3)二分类输出层的神经元个数为1,多分类问题输出层神经元个数为类别个数,若类数未知则可通过试算确定。

相关文章:

吴恩达机器学习 第二课 week2 多分类问题

目录 01 学习目标 02 实现工具 03 概念与原理 04 应用示例 05 总结 01 学习目标 &#xff08;1&#xff09;理解二分类与多分类的原理区别 &#xff08;2&#xff09;掌握简单多分类问题的神经网络实现方法 &#xff08;3&#xff09;理解多分类问题算法中的激活函数与损失…...

112、路径总和

给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 叶子节点 是指没有子节点…...

Vue 封装组件之Input框

封装Input组件:MyInput.vue <template><div class"base-input-wraper"><el-inputv-bind"$attrs"v-on"$listeners"class"e-input":style"inputStyle":value"value":size"size"input&quo…...

一段代码让你了解Java中的抽象

我们先来看一道题&#xff01; 计算几何对象的面积之和&#xff09;编写一个方法&#xff0c;该方法用于计算数组中所有几何对象的面积之和。该方法的签名是&#xff1a; public static double sumArea(GeometricObject[] a) 编写一个测试程序&#xff0c;该程序创建一个包含四…...

Sping源码(九)—— Bean的初始化(非懒加载)— Bean的创建方式(factoryMethod)

序言 前面文章介绍了在Spring中多种创建Bean实例的方式&#xff0c;包括采用FactoryBean的方式创建对象、使用反射创建对象、自定义BeanFactoryPostProcessor。 这篇文章继续介绍Spring中创建Bean的形式之一——factoryMethod。方法用的不多&#xff0c;感兴趣可以当扩展了解。…...

绝对全网首发,利用Disruptor EventHandler实现在多线程下顺序执行任务

disruptor有两种任务处理器&#xff0c;一个是EventHandler ,另一个是WorkHandler. EventHandler可以彼此独立消费同一个队列中的任务&#xff0c;WorkHandler可以共同竞争消费同一个队列中的任务。也就是说&#xff0c;假设任务队列中有a、b、c、d三个事件&#xff0c;eventHa…...

单例设计模式双重检查的作用

先看双重校验锁的写法 public class Singleton {/*volatile 修饰&#xff0c;singleton new Singleton() 可以拆解为3步&#xff1a;1、分配对象内存(给singleton分配内存)2、调用构造器方法&#xff0c;执行初始化&#xff08;调用 Singleton 的构造函数来初始化成员变量&am…...

NGINX_十二 nginx 地址重写 rewrite

十二 nginx 地址重写 rewrite 1 什么是Rewrite Rewrite对称URL Rewrite&#xff0c;即URL重写&#xff0c;就是把传入Web的请求重定向到其他URL的过程。URL Rewrite最常见的应用是URL伪静态化&#xff0c;是将动态页面显示为静态页面方式的一种技术。比如 http://www.123.com…...

react用ECharts实现组织架构图

找到ECharts中路径图。 然后开始爆改。 <div id{org- name} style{{ width: 100%, height: 650, display: flex, justifyContent: center }}></div> // data的数据格式 interface ChartData {name: string;value: number;children: ChartData[]; } const treeDep…...

坚持刷题|合并有序链表

文章目录 题目思考代码实现迭代递归 扩展实现k个有序链表合并方法一方法二 PriorityQueue基本操作Java示例注意事项 Hello&#xff0c;大家好&#xff0c;我是阿月。坚持刷题&#xff0c;老年痴呆追不上我&#xff0c;消失了一段时间&#xff0c;我又回来刷题啦&#xff0c;今天…...

SPI协议——对外部SPI Flash操作

目录 1. W25Q32JVSSIQ背景知识 1.1 64个可擦除块 1.2 1024个扇区&#xff08;每个块有16个扇区&#xff09; 1.3 页 1. W25Q32JVSSIQ背景知识 W25Q32JV阵列被组织成16,384个可编程页&#xff0c;每页有256字节。一次最多可以编程256个字节。页面可分为16组(4KB扇区清除&…...

kotlin类型检测与类型转换

一、is与!is操作符 1、使用 is 操作符或其否定形式 !is 在运行时检测对象是否符合给定类型。 fun main() {var a "1"if(a is String) {println("a是字符串类型:${a.length}")}// 或val b a is Stringprintln(b) } 二、"不安全的"转换操作符…...

【JDBC】Oracle数据库连接问题记录

Failed to load driver class oracle.jdbc.driver.OracleDriver in either of HikariConfig class oracle驱动包未正确加载&#xff0c;可以先尝试使用下面方式加载检查类是否存在&#xff0c;如果不存在需要手动下载odbc包 try {Class.forName("oracle.jdbc.driver.Ora…...

leetcode45 跳跃游戏II

题目 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说&#xff0c;如果你在 nums[i] 处&#xff0c;你可以跳转到任意 nums[i j] 处: 0 < j < nums[i] i j < n 返回到达 nums[n - 1]…...

【数学】什么是方法矩估计?和最大似然估计是什么关系?

背景 方法矩估计&#xff08;Method of Moments Estimation&#xff09;和最大似然估计&#xff08;Maximum Likelihood Estimation, MLE&#xff09;是两种常用的参数估计方法。方法矩估计基于样本矩与总体矩的关系&#xff0c;通过样本数据计算样本矩来估计总体参数。最大似…...

C++初学者指南第一步---10.内存(基础)

C初学者指南第一步—10.内存&#xff08;基础&#xff09; 文章目录 C初学者指南第一步---10.内存&#xff08;基础&#xff09;1.内存模型1.1 纸上谈兵&#xff1a;C的抽象内存模型1.2 实践&#xff1a;内存的实际处理 2. 自动存储3.动态存储&#xff1a;std::vector3.1 动态内…...

扩散模型详细推导过程——编码与解码

符号表 符号含义 x ( i ) z 0 ( i ) \boldsymbol{x}^{(i)}\boldsymbol{z}_0^{(i)} x(i)z0(i)​第 i i i个训练数据&#xff0c;其为长度为 d d d的向量 z t ( i ) \boldsymbol{z}_t^{(i)} zt(i)​第 i i i个训练数据在第 t t t时刻的加噪版本 ϵ t ( i ) \boldsymbol{\epsilo…...

js如何实现开屏弹窗

开屏弹窗是什么&#xff0c;其实就是第一次登录后进入页面给你的一种公告提示&#xff0c;此后再回到当前这个页面时弹窗是不会再出现的。也就是说这个弹窗只会出现一次。 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>…...

C#——文件读取Directory类详情

文件读取Directory类 Durectory提供了目录以及子目录进行创建移动和列举操作方法 Directory和Directorylnfo类(主要操作文件目录属性列如文件是否隐藏的 或者只读等这些属性) Directory对目录进行复制、移动、重命名、创建和删除等操作DirectoryInfo用于对目录属性执行操作 …...

Ruby on Rails Post项目设置网站初始界面

在构建了Ruby的Web服务器后&#xff0c;第三步就可以去掉框架的官方页面&#xff0c;设置自己的网页初始页了。 Linux系统安装Ruby语言-CSDN博客 、在Ubuntu中创建Ruby on Rails项目并搭建数据库-CSDN博客、 Ruby语言建立Web服务器-CSDN博客 了解Ruby onRails项目中的主要文件…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...