当前位置: 首页 > news >正文

【数学】什么是方法矩估计?和最大似然估计是什么关系?

背景

方法矩估计(Method of Moments Estimation)和最大似然估计(Maximum Likelihood Estimation, MLE)是两种常用的参数估计方法。方法矩估计基于样本矩与总体矩的关系,通过样本数据计算样本矩来估计总体参数。最大似然估计基于最大化样本数据的联合概率密度函数,通过寻找参数值使得样本数据出现的概率最大来估计参数。

公式

方法矩估计

方法矩估计基于以下公式:

  • 样本矩: M k = 1 n ∑ i = 1 n X i k M_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k Mk=n1i=1nXik
  • 总体矩: E ( X k ) = μ k E(X^k) = \mu_k E(Xk)=μk

通过设定样本矩等于总体矩,可以解出参数估计值。

最大似然估计

最大似然估计基于以下公式:

  • 似然函数: L ( θ ) = ∏ i = 1 n f ( X i ; θ ) L(\theta) = \prod_{i=1}^{n} f(X_i; \theta) L(θ)=i=1nf(Xi;θ)
  • 对数似然函数: ln ⁡ L ( θ ) = ∑ i = 1 n ln ⁡ f ( X i ; θ ) \ln L(\theta) = \sum_{i=1}^{n} \ln f(X_i; \theta) lnL(θ)=i=1nlnf(Xi;θ)

通过最大化对数似然函数来求解参数估计值。

示例题目

示例 1:正态分布参数估计

假设样本数据来自一个均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2的正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),我们要估计 μ \mu μ σ 2 \sigma^2 σ2

详细讲解

方法矩估计
  1. 样本矩计算:

    • 一阶样本矩: M 1 = 1 n ∑ i = 1 n X i M_1 = \frac{1}{n} \sum_{i=1}^{n} X_i M1=n1i=1nXi
    • 二阶样本矩: M 2 = 1 n ∑ i = 1 n X i 2 M_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 M2=n1i=1nXi2
  2. 总体矩关系:

    • 一阶总体矩: E ( X ) = μ E(X) = \mu E(X)=μ
    • 二阶总体矩: E ( X 2 ) = μ 2 + σ 2 E(X^2) = \mu^2 + \sigma^2 E(X2)=μ2+σ2
  3. 通过样本矩等于总体矩,得到:
    μ ^ = M 1 = 1 n ∑ i = 1 n X i \hat{\mu} = M_1 = \frac{1}{n} \sum_{i=1}^{n} X_i μ^=M1=n1i=1nXi
    σ ^ 2 = M 2 − μ ^ 2 \hat{\sigma}^2 = M_2 - \hat{\mu}^2 σ^2=M2μ^2

最大似然估计
  1. 似然函数:
    L ( μ , σ 2 ) = ∏ i = 1 n 1 2 π σ 2 exp ⁡ ( − ( X i − μ ) 2 2 σ 2 ) L(\mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(X_i - \mu)^2}{2\sigma^2} \right) L(μ,σ2)=i=1n2πσ2 1exp(2σ2(Xiμ)2)

  2. 对数似然函数:
    ln ⁡ L ( μ , σ 2 ) = − n 2 ln ⁡ ( 2 π σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( X i − μ ) 2 \ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2 lnL(μ,σ2)=2nln(2πσ2)2σ21i=1n(Xiμ)2

  3. μ \mu μ σ 2 \sigma^2 σ2求导并设为0,解得:
    μ ^ = 1 n ∑ i = 1 n X i \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i μ^=n1i=1nXi
    σ ^ 2 = 1 n ∑ i = 1 n ( X i − μ ^ ) 2 \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^2 σ^2=n1i=1n(Xiμ^)2

Python代码求解

import numpy as np# 生成样本数据
np.random.seed(0)
data = np.random.normal(loc=5, scale=2, size=100)# 方法矩估计
mu_mom = np.mean(data)
sigma2_mom = np.mean(data**2) - mu_mom**2# 最大似然估计
mu_mle = np.mean(data)
sigma2_mle = np.var(data, ddof=0)print("方法矩估计:")
print(f"mu = {mu_mom}, sigma^2 = {sigma2_mom}")print("最大似然估计:")
print(f"mu = {mu_mle}, sigma^2 = {sigma2_mle}")

实际生活中的例子

在金融领域中,投资组合的收益通常被假设为正态分布。为了估计未来收益的均值和波动率,金融分析师可以使用历史收益数据来进行参数估计。通过方法矩估计或最大似然估计,可以得出投资组合的均值收益和方差,从而指导投资决策。

方法矩估计与最大似然估计的关系与优缺点

两种方法各有优缺点:

  • 方法矩估计通常计算简单,易于理解,但在有限样本量下估计量的效率较低。
  • 最大似然估计在大样本量下具有一致性和渐近正态性,估计量更有效,但计算复杂,尤其是对于复杂模型。

选择哪种方法更好取决于具体问题和数据特点。一般情况下,最大似然估计更受欢迎,因为它在大样本下具有良好的统计性质。

相关文章:

【数学】什么是方法矩估计?和最大似然估计是什么关系?

背景 方法矩估计(Method of Moments Estimation)和最大似然估计(Maximum Likelihood Estimation, MLE)是两种常用的参数估计方法。方法矩估计基于样本矩与总体矩的关系,通过样本数据计算样本矩来估计总体参数。最大似…...

C++初学者指南第一步---10.内存(基础)

C初学者指南第一步—10.内存(基础) 文章目录 C初学者指南第一步---10.内存(基础)1.内存模型1.1 纸上谈兵:C的抽象内存模型1.2 实践:内存的实际处理 2. 自动存储3.动态存储:std::vector3.1 动态内…...

扩散模型详细推导过程——编码与解码

符号表 符号含义 x ( i ) z 0 ( i ) \boldsymbol{x}^{(i)}\boldsymbol{z}_0^{(i)} x(i)z0(i)​第 i i i个训练数据,其为长度为 d d d的向量 z t ( i ) \boldsymbol{z}_t^{(i)} zt(i)​第 i i i个训练数据在第 t t t时刻的加噪版本 ϵ t ( i ) \boldsymbol{\epsilo…...

js如何实现开屏弹窗

开屏弹窗是什么&#xff0c;其实就是第一次登录后进入页面给你的一种公告提示&#xff0c;此后再回到当前这个页面时弹窗是不会再出现的。也就是说这个弹窗只会出现一次。 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>…...

C#——文件读取Directory类详情

文件读取Directory类 Durectory提供了目录以及子目录进行创建移动和列举操作方法 Directory和Directorylnfo类(主要操作文件目录属性列如文件是否隐藏的 或者只读等这些属性) Directory对目录进行复制、移动、重命名、创建和删除等操作DirectoryInfo用于对目录属性执行操作 …...

Ruby on Rails Post项目设置网站初始界面

在构建了Ruby的Web服务器后&#xff0c;第三步就可以去掉框架的官方页面&#xff0c;设置自己的网页初始页了。 Linux系统安装Ruby语言-CSDN博客 、在Ubuntu中创建Ruby on Rails项目并搭建数据库-CSDN博客、 Ruby语言建立Web服务器-CSDN博客 了解Ruby onRails项目中的主要文件…...

03-QTWebEngine中使用qtvirtualkeyboard

qt提供了 virtualKeyboard 虚拟键盘模块&#xff0c;只需要在在main函数中最开始加入这样一句就可以了 qputenv("QT_IM_MODULE", QByteArray("qtvirtualkeyboard")); 但是在使用的时候遇到了一些问题&#xff1a; 1、中文输入的时候没有输入提示 Qvirt…...

leetcode3无重复字符的最长字串(重点讲滑动窗口)

本文主要讲解无重复字符的最长字串的要点与细节&#xff0c;根据步骤一步步走更方便理解 c与java代码如下&#xff0c;末尾 具体要点&#xff1a; 1. 区分一下子串和子序列 子串&#xff1a;要求元素在母串中是连续地出现 子序列&#xff1a;不要求连续 2. 题目中有两个核心…...

Gobject tutorial 八

The GObject base class Object memory management Gobject的内存管理相关的API很复杂&#xff0c;但其目标是提供一个基于引用计数的灵活的内存管理模式。 下面我们来介绍一下&#xff0c;与管理引用计数相关的函数。 Reference Count 函数g_object_ref和g_object_unref的…...

DDMA信号处理以及数据处理的流程---cfar检测

Hello,大家好,我是Xiaojie,好久不见,欢迎大家能够和Xiaojie一起学习毫米波雷达知识,Xiaojie准备连载一个系列的文章—DDMA信号处理以及数据处理的流程,本系列文章将从目标生成、信号仿真、测距、测速、cfar检测、测角、目标聚类、目标跟踪这几个模块逐步介绍,这个系列的…...

【机器学习】从理论到实践:决策树算法在机器学习中的应用与实现

&#x1f4dd;个人主页&#xff1a;哈__ 期待您的关注 目录 &#x1f4d5;引言 ⛓决策树的基本原理 1. 决策树的结构 2. 信息增益 熵的计算公式 信息增益的计算公式 3. 基尼指数 4. 决策树的构建 &#x1f916;决策树的代码实现 1. 数据准备 2. 决策树模型训练 3.…...

Zookeeper 集群节点故障剔除、切换、恢复原理

Zookeeper 集群节点故障剔除、切换、恢复原理 zookeeper 集群节点故障时,如何剔除节点,如果为领导节点如何处理,如何进行故障恢 复的,实现原理? 在 Zookeeper 集群中,当节点故障时,集群需要自动剔除故障节点并进行故障恢复,确保集群的高 可用性和一致性。具体来说,…...

解决帝国cms栏目管理拼音乱码的问题

帝国CMS7.5版本utf-8版网站后台增加栏目生成乱码的问题怎么解决 1、需要改一个函数&#xff0c;并且增加一个处理文件&#xff0c;方法如下&#xff1a; 修改e/class/connect.php文件&#xff0c;找到ReturnPinyinFun函数&#xff0c;如未修改文件在4533-4547行&#xff0c;将…...

Git快速入门

一 快速使用 1.1 初始化 什么是版本库呢&#xff1f;版本库又名仓库&#xff0c;可以简单理解成一个目录&#xff0c;这个目录里面的所有文件都可以被Git管理起来&#xff0c;每个文件的修改、删除&#xff0c;Git都能跟踪&#xff0c;以便任何时刻都可以追踪历史&#xff0…...

【18.0】JavaScript---事件案例

【18.0】JavaScript—事件案例 【一】开关灯事件 【介绍】设置一个按钮&#xff0c;按下按钮触发事件&#xff0c;来回切换圆形图片的颜色 【分析】 图片设置&#xff1a;设置成圆形的图片背景颜色&#xff1a;设置红绿两个颜色&#xff0c;来回切换按钮设置&#xff1a;点击…...

推荐系统三十六式学习笔记:原理篇.矩阵分解12|如果关注排序效果,那么这个模型可以帮到你

目录 矩阵分解的不足贝叶斯个性化排序AUC构造样本目标函数训练方法 总结 矩阵分解在推荐系统中的地位非常崇高。它既有协同过滤的血统&#xff0c;又有机器学习的基因&#xff0c;可以说是非常优秀了&#xff1b;但即便如此&#xff0c;传统的矩阵分解无论是在处理显式反馈&…...

Kafka之ISR机制的理解

文章目录 Kafka的基本概念什么是ISRISR的维护机制ISR的作用ISR相关配置参数同步过程示例代码总结 Kafka中的ISR&#xff08;In-Sync Replicas同步副本&#xff09;机制是确保数据高可用性和一致性的核心组件。 Kafka的基本概念 在Kafka中&#xff0c;数据被组织成主题&#xf…...

如何设计一个点赞系统

首先我们定义出一个点赞系统需要对外提供哪些接口&#xff1a; 1.用户对特定的消息进行点赞&#xff1b; 2.用户查看自己发布的某条消息点赞数量以及被哪些人赞过&#xff1b; 3.用户查看自己给哪些消息点赞过&#xff1b; 这里假设每条消息都有一个message_id, 每一个用户都…...

对象存储测试工具-s3cmd

一、环境安装 官网&#xff1a;https://s3tools.org/s3cmd 下载安装包&#xff1a;https://s3tools.org/download GitHub&#xff1a;https://github.com/s3tools/s3cmd/releases 本文安装包&#xff1a;https://github.com/s3tools/s3cmd/releases/download/v2.0.2/s3cmd-2.0…...

OpenCV--图像色彩空间及转换

图像色彩空间及转换 python代码和笔记 python代码和笔记 import cv2 色彩空间&#xff0c;基础&#xff1a;RGB或BGR OpenCV中&#xff1a; 一、HSV(HSB)&#xff1a;用的最多&#xff0c; Hue&#xff1a;色相-色彩(0-360)&#xff0c;红色&#xff1a;0&#xff0c;绿色&…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...