【深度学习】GELU激活函数是什么?
torch.nn.GELU 模块在 PyTorch 中实现了高斯误差线性单元(GELU)激活函数。GELU 被用于许多深度学习模型中,包括Transformer,因为它相比传统的 ReLU(整流线性单元)函数能够更好地近似神经元的真实激活行为。
概述
- 功能: 应用 GELU 激活函数。
- 公式: GELU 激活函数可以表示为:
GELU ( x ) = x ⋅ Φ ( x ) \text{GELU}(x) = x \cdot \Phi(x) GELU(x)=x⋅Φ(x)
其中 Φ ( x ) \Phi(x) Φ(x) 是标准正态分布的累积分布函数。
使用方法
要在神经网络中使用 torch.nn.GELU 模块,你可以简单地导入它并将其添加到模型的层中。以下是一个示例:
import torch
import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.layer1 = nn.Linear(10, 20)self.gelu = nn.GELU()self.layer2 = nn.Linear(20, 10)def forward(self, x):x = self.layer1(x)x = self.gelu(x)x = self.layer2(x)return x# 创建模型实例
model = MyModel()# 创建一个随机输入张量
input_tensor = torch.randn(5, 10)# 前向传播
output_tensor = model(input_tensor)
print(output_tensor)
解释
nn.Linear(10, 20): 一个线性层,输入大小为 10,输出大小为 20。nn.GELU(): GELU 激活函数,应用于第一个线性层的输出。nn.Linear(20, 10): 另一个线性层,输入大小为 20,输出大小为 10。
GELU 激活函数用于在模型中引入非线性,这有助于模型学习更复杂的模式。
GELU 的优点
- 平滑近似: GELU 提供了一种比 ReLU 更平滑的神经元激活近似,这可以帮助训练的稳定性和收敛性。
- 概率解释: 通过结合累积分布函数,GELU 以更有原则的方式考虑激活的概率,这可能在某些模型(尤其是自然语言处理 (NLP) 和计算机视觉 (CV) 中)带来更好的性能。
通过在你的 PyTorch 模型中使用 torch.nn.GELU,你可以利用这些优点来提高神经网络的性能和训练动态。
GELU(Gaussian Error Linear Unit)激活函数是在论文《Gaussian Error Linear Units (GELUs)》中提出的。这篇论文由 Dan Hendrycks 和 Kevin Gimpel 于 2016 年发表。
以下是使用 Python 和 Matplotlib 绘制 GELU 激活函数的函数曲线的代码:
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf# 定义 GELU 激活函数
def gelu(x):return 0.5 * x * (1 + erf(x / np.sqrt(2)))# 生成 x 轴数据
x = np.linspace(-3, 3, 400)
# 计算 y 轴数据
y = gelu(x)# 绘制 GELU 激活函数曲线
plt.figure(figsize=(8, 6))
plt.plot(x, y, label='GELU', color='blue')
plt.title('GELU Activation Function')
plt.xlabel('Input')
plt.ylabel('Output')
plt.legend()
plt.grid(True)
plt.show()
运行上述代码将生成一个展示 GELU 激活函数的曲线图:

优点:
- 平滑的近似:
GELU 提供了比 ReLU 更平滑的激活函数,这有助于神经网络更稳定地训练并提高收敛性。ReLU 在负数区间完全关闭,而 GELU 会根据输入值的大小逐渐激活神经元。
- 概率解释:
GELU 将标准正态分布的累积分布函数(CDF)结合到激活函数中,以一种更有原则的方式处理激活的概率。这种方法考虑了输入值的分布,使得神经网络可以更有效地处理不同范围的输入。
- 更好的性能:
由于 GELU 函数的平滑性和概率解释,它在处理某些任务时(尤其是在自然语言处理 (NLP) 和计算机视觉 (CV) 任务中)表现出色。在这些任务中,GELU 激活函数可以提高模型的性能。
- 渐进式变化:
相对于 ReLU 的硬边界(即大于零输出本身,小于零输出零),GELU 提供了一种更加渐进式的激活方式,使得小负值输入仍然能够产生一定的激活效果,这在某些情况下可以提高模型的表现。
GELU 反向传播的公式
GELU 激活函数的公式
GELU 激活函数定义为:
GELU ( x ) = x ⋅ Φ ( x ) \text{GELU}(x) = x \cdot \Phi(x) GELU(x)=x⋅Φ(x)
其中 Φ ( x ) \Phi(x) Φ(x) 是标准正态分布的累积分布函数。 Φ ( x ) \Phi(x) Φ(x) 的表达式为:
Φ ( x ) = 1 2 ( 1 + erf ( x 2 ) ) \Phi(x) = \frac{1}{2} \left( 1 + \text{erf}\left( \frac{x}{\sqrt{2}} \right) \right) Φ(x)=21(1+erf(2x))
GELU 的梯度公式
为了求 GELU 的梯度,我们需要对其进行求导。这里 erf ( x ) \text{erf}(x) erf(x) 是误差函数,定义为:
erf ( x ) = 2 π ∫ 0 x e − t 2 d t \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt erf(x)=π2∫0xe−t2dt
求导过程
GELU 的导数可以表示为:
d d x GELU ( x ) = d d x ( x ⋅ Φ ( x ) ) \frac{d}{dx} \text{GELU}(x) = \frac{d}{dx} \left( x \cdot \Phi(x) \right) dxdGELU(x)=dxd(x⋅Φ(x))
根据乘积法则:
d d x ( x ⋅ Φ ( x ) ) = Φ ( x ) + x ⋅ d d x Φ ( x ) \frac{d}{dx} \left( x \cdot \Phi(x) \right) = \Phi(x) + x \cdot \frac{d}{dx} \Phi(x) dxd(x⋅Φ(x))=Φ(x)+x⋅dxdΦ(x)
我们需要对 Φ ( x ) \Phi(x) Φ(x) 进行求导:
d d x Φ ( x ) = d d x ( 1 2 ( 1 + erf ( x 2 ) ) ) \frac{d}{dx} \Phi(x) = \frac{d}{dx} \left( \frac{1}{2} \left( 1 + \text{erf}\left( \frac{x}{\sqrt{2}} \right) \right) \right) dxdΦ(x)=dxd(21(1+erf(2x)))
由于常数部分导数为零,我们仅对 erf ( x 2 ) \text{erf}\left( \frac{x}{\sqrt{2}} \right) erf(2x) 进行求导:
d d x erf ( x 2 ) = 2 π e − ( x 2 ) 2 ⋅ 1 2 = e − x 2 / 2 2 π \frac{d}{dx} \text{erf}\left( \frac{x}{\sqrt{2}} \right) = \frac{2}{\sqrt{\pi}} e^{-\left( \frac{x}{\sqrt{2}} \right)^2} \cdot \frac{1}{\sqrt{2}} = \frac{e^{-x^2/2}}{\sqrt{2\pi}} dxderf(2x)=π2e−(2x)2⋅21=2πe−x2/2
所以:
d d x Φ ( x ) = 1 2 π e − x 2 / 2 \frac{d}{dx} \Phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dxdΦ(x)=2π1e−x2/2
将其代入前面的公式,我们得到:
d d x GELU ( x ) = Φ ( x ) + x ⋅ 1 2 π e − x 2 / 2 \frac{d}{dx} \text{GELU}(x) = \Phi(x) + x \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dxdGELU(x)=Φ(x)+x⋅2π1e−x2/2
因此,GELU 的梯度为:
d d x GELU ( x ) = 1 2 ( 1 + erf ( x 2 ) ) + x ⋅ 1 2 π e − x 2 / 2 \frac{d}{dx} \text{GELU}(x) = \frac{1}{2} \left( 1 + \text{erf}\left( \frac{x}{\sqrt{2}} \right) \right) + x \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dxdGELU(x)=21(1+erf(2x))+x⋅2π1e−x2/2
Python 代码绘制 GELU 梯度曲线
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf, erfc# 定义 GELU 激活函数
def gelu(x):return 0.5 * x * (1 + erf(x / np.sqrt(2)))# 定义 GELU 激活函数的导数
def gelu_derivative(x):return 0.5 * (1 + erf(x / np.sqrt(2))) + (x * np.exp(-x**2 / 2)) / np.sqrt(2 * np.pi)# 生成 x 轴数据
x = np.linspace(-3, 3, 400)
# 计算 y 轴数据
y = gelu(x)
# 计算 y' 轴数据
dy = gelu_derivative(x)# 绘制 GELU 激活函数和梯度曲线
plt.figure(figsize=(8, 6))
plt.plot(x, y, label='GELU', color='blue')
plt.plot(x, dy, label='GELU Derivative', color='red', linestyle='dashed')
plt.title('GELU Activation Function and Its Derivative')
plt.xlabel('Input')
plt.ylabel('Output')
plt.legend()
plt.grid(True)
plt.show()
运行这段代码将生成一个展示 GELU 激活函数及其梯度的曲线图,有助于直观地理解 GELU 在反向传播中的行为:

相关文章:
【深度学习】GELU激活函数是什么?
torch.nn.GELU 模块在 PyTorch 中实现了高斯误差线性单元(GELU)激活函数。GELU 被用于许多深度学习模型中,包括Transformer,因为它相比传统的 ReLU(整流线性单元)函数能够更好地近似神经元的真实激活行为。…...
如何编译和运行您的第一个Java程序
如何编译和运行您的第一个Java程序 让我们从一个简单的java程序开始。 简单的Java程序 这是一个非常基本的java程序,它会打印一条消息“这是我在java中的第一个程序”。 public class FirstJavaProgram {public static void main(String[] args){System.…...
vscode用vue框架写一个登陆页面
目录 一、创建登录页面 二、构建好登陆页面的路由 三、编写登录页代码 1.添加基础结构 2.给登录页添加背景 3.解决填充不满问题 4.我们把背景的红颜色替换成背景图: 5.在页面中央添加一个卡片来显示登录页面 6.设置中间卡片页面的左侧 7.设置右侧的样式及…...
腾讯云API安全保障措施?有哪些调用限制?
腾讯云API的调用效率如何优化?怎么使用API接口发信? 腾讯云API作为腾讯云提供的核心服务之一,广泛应用于各行各业。然而,随着API应用的普及,API安全问题也日益突出。AokSend将详细探讨腾讯云API的安全保障措施&#x…...
在建设工程合同争议案件中,如何来认定“竣工验收”?
在建设工程合同争议案件中,如何来认定“竣工验收”? 建设工程的最终竣工验收,既涉及在建设单位组织下的五方单位验收,又需政府质量管理部门的监督验收以及竣工验收备案,工程档案还需递交工程所在地的工程档案馆归档。…...
Linux:多线程中的互斥与同步
多线程 线程互斥互斥锁互斥锁实现的原理封装原生线程库封装互斥锁 死锁避免死锁的四种方法 线程同步条件变量 线程互斥 在多线程中,如果存在有一个全局变量,那么这个全局变量会被所有执行流所共享。但是,资源共享就会存在一种问题࿱…...
数据仓库之主题域
数据仓库的主题域(Subject Area)是按照特定业务领域或主题对数据进行分类和组织的方式。每个主题域集中反映一个特定的业务方面,使得数据分析和查询更加清晰和高效。主题域通常与企业的关键业务过程相关,能够帮助用户在数据仓库中…...
【简易版tinySTL】 vector容器
文章目录 基本概念功能思路代码实现vector.htest.cpp 代码详解变量构造函数析构函数拷贝构造operatorpush_backoperator[]insertprintElements 本实现版本 和 C STL标准库实现版本的区别: 基本概念 vector数据结构和数组非常相似,也称为单端数组vector与…...
BRAVE:扩展视觉编码能力,推动视觉-语言模型发展
视觉-语言模型(VLMs)在理解和生成涉及视觉与文本的任务上取得了显著进展,它们在理解和生成结合视觉与文本信息的任务中扮演着重要角色。然而,这些模型的性能往往受限于其视觉编码器的能力。例如,现有的一些模型可能对某…...
使用 Verdaccio 建立私有npm库
网上有很多方法,但很多没标注nginx的版本所以踩了一些坑,下方这个文档是完善后的,对linux不是很熟练,所以不懂linux不会搭建的跟着做就可以了 搭建方法 首先需要一台云服务器 以139.196.226.123为例登录云服务器 下载node cd /usr/local/lib下载node 解压 下载 wget https://…...
个人职业规划(含前端职业+技术线路)
1. 了解自己的兴趣与长处 喜欢擅长的事 职业方向 2. 设定长期目标(5年) 目标内容 建立自己的品牌建立自己的社交网络 适量参加社交活动,认识更多志同道合的小伙伴寻求导师指导 建立自己的作品集 注意事项 每年元旦进行审视和调整永葆积极…...
LeetCode | 344.反转字符串
设置头尾两个指针,依靠中间变量temp交换头尾指针所指元素,头指针后移,尾指针前移,直到头尾指针重合或者头指针在尾指针后面一个元素 class Solution(object):def reverseString(self, s):""":type s: List[str]:r…...
一步一步用numpy实现神经网络各种层
1. 首先准备一下数据 if __name__ "__main__":data np.array([[2, 1, 0],[2, 2, 0],[5, 4, 1],[4, 5, 1],[2, 3, 0],[3, 2, 0],[6, 5, 1],[4, 1, 0],[6, 3, 1],[7, 4, 1]])x data[:, :-1]y data[:, -1]for epoch in range(1000):...2. 实现SoftmaxCrossEntropy层…...
vue学习(二)
9.vue中的数据代理 通过vm对象来代理data对象中的属性操作(读写),目的是为了更加方便操作data中的数据 基本原理:通过Object.defineProperty()把data对象所有属性添加到vm上,为每一个添加到vm上的属性,都增…...
Maven 介绍
Maven open in new window 官方文档是这样介绍的 Maven 的: Apache Maven is a software project management and comprehension tool. Based on the concept of a project object model (POM), Maven can manage a projects build, reporting and documentation fr…...
QT截图程序三-截取自定义多边形
上一篇文章QT截图程序,可多屏幕截图二,增加调整截图区域功能-CSDN博客描述了如何截取,具备调整边缘功能后已经方便使用了,但是与系统自带的程序相比,似乎没有什么特别,只能截取矩形区域。 如果可以按照自己…...
Unity的三种Update方法
1、FixedUpdate 物理作用——处理物理引擎相关的计算和刚体的移动 (1) 调用时机:在固定的时间间隔内,而不是每一帧被调用 (2) 作用:用于处理物理引擎的计算,例如刚体的移动和碰撞检测 (3) 特点:能更准确地处理物理…...
[Python学习篇] Python字典
字典是一种可变的、无序的键值对(key-value)集合。字典在许多编程(Java中的HashMap)任务中非常有用,因为它们允许快速查找、添加和删除元素。字典使用花括号 {} 表示。字典是可变类型。 语法: 变量 {key1…...
react项目中如何书写css
一:问题: 在 vue 项目中,我们书写css的方式很简单,就是在 .vue文件中写style标签,然后加上scope属性,就可以隔离当前组件的样式,但是在react中,是没有这个东西的,如果直…...
PostgreSQL源码分析——绑定变量
这里分析一下函数中应用绑定变量的问题,但实际应用场景中,不推荐这么使用。 prepare divplan2(int,int) as select div($1,$2); execute divplan2(4,2);语法解析 分别分析prepare语句以及execute语句。 gram.y中定义 /******************************…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...
