【深度学习】GELU激活函数是什么?
torch.nn.GELU 模块在 PyTorch 中实现了高斯误差线性单元(GELU)激活函数。GELU 被用于许多深度学习模型中,包括Transformer,因为它相比传统的 ReLU(整流线性单元)函数能够更好地近似神经元的真实激活行为。
概述
- 功能: 应用 GELU 激活函数。
- 公式: GELU 激活函数可以表示为:
GELU ( x ) = x ⋅ Φ ( x ) \text{GELU}(x) = x \cdot \Phi(x) GELU(x)=x⋅Φ(x)
其中 Φ ( x ) \Phi(x) Φ(x) 是标准正态分布的累积分布函数。
使用方法
要在神经网络中使用 torch.nn.GELU 模块,你可以简单地导入它并将其添加到模型的层中。以下是一个示例:
import torch
import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.layer1 = nn.Linear(10, 20)self.gelu = nn.GELU()self.layer2 = nn.Linear(20, 10)def forward(self, x):x = self.layer1(x)x = self.gelu(x)x = self.layer2(x)return x# 创建模型实例
model = MyModel()# 创建一个随机输入张量
input_tensor = torch.randn(5, 10)# 前向传播
output_tensor = model(input_tensor)
print(output_tensor)
解释
nn.Linear(10, 20): 一个线性层,输入大小为 10,输出大小为 20。nn.GELU(): GELU 激活函数,应用于第一个线性层的输出。nn.Linear(20, 10): 另一个线性层,输入大小为 20,输出大小为 10。
GELU 激活函数用于在模型中引入非线性,这有助于模型学习更复杂的模式。
GELU 的优点
- 平滑近似: GELU 提供了一种比 ReLU 更平滑的神经元激活近似,这可以帮助训练的稳定性和收敛性。
- 概率解释: 通过结合累积分布函数,GELU 以更有原则的方式考虑激活的概率,这可能在某些模型(尤其是自然语言处理 (NLP) 和计算机视觉 (CV) 中)带来更好的性能。
通过在你的 PyTorch 模型中使用 torch.nn.GELU,你可以利用这些优点来提高神经网络的性能和训练动态。
GELU(Gaussian Error Linear Unit)激活函数是在论文《Gaussian Error Linear Units (GELUs)》中提出的。这篇论文由 Dan Hendrycks 和 Kevin Gimpel 于 2016 年发表。
以下是使用 Python 和 Matplotlib 绘制 GELU 激活函数的函数曲线的代码:
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf# 定义 GELU 激活函数
def gelu(x):return 0.5 * x * (1 + erf(x / np.sqrt(2)))# 生成 x 轴数据
x = np.linspace(-3, 3, 400)
# 计算 y 轴数据
y = gelu(x)# 绘制 GELU 激活函数曲线
plt.figure(figsize=(8, 6))
plt.plot(x, y, label='GELU', color='blue')
plt.title('GELU Activation Function')
plt.xlabel('Input')
plt.ylabel('Output')
plt.legend()
plt.grid(True)
plt.show()
运行上述代码将生成一个展示 GELU 激活函数的曲线图:

优点:
- 平滑的近似:
GELU 提供了比 ReLU 更平滑的激活函数,这有助于神经网络更稳定地训练并提高收敛性。ReLU 在负数区间完全关闭,而 GELU 会根据输入值的大小逐渐激活神经元。
- 概率解释:
GELU 将标准正态分布的累积分布函数(CDF)结合到激活函数中,以一种更有原则的方式处理激活的概率。这种方法考虑了输入值的分布,使得神经网络可以更有效地处理不同范围的输入。
- 更好的性能:
由于 GELU 函数的平滑性和概率解释,它在处理某些任务时(尤其是在自然语言处理 (NLP) 和计算机视觉 (CV) 任务中)表现出色。在这些任务中,GELU 激活函数可以提高模型的性能。
- 渐进式变化:
相对于 ReLU 的硬边界(即大于零输出本身,小于零输出零),GELU 提供了一种更加渐进式的激活方式,使得小负值输入仍然能够产生一定的激活效果,这在某些情况下可以提高模型的表现。
GELU 反向传播的公式
GELU 激活函数的公式
GELU 激活函数定义为:
GELU ( x ) = x ⋅ Φ ( x ) \text{GELU}(x) = x \cdot \Phi(x) GELU(x)=x⋅Φ(x)
其中 Φ ( x ) \Phi(x) Φ(x) 是标准正态分布的累积分布函数。 Φ ( x ) \Phi(x) Φ(x) 的表达式为:
Φ ( x ) = 1 2 ( 1 + erf ( x 2 ) ) \Phi(x) = \frac{1}{2} \left( 1 + \text{erf}\left( \frac{x}{\sqrt{2}} \right) \right) Φ(x)=21(1+erf(2x))
GELU 的梯度公式
为了求 GELU 的梯度,我们需要对其进行求导。这里 erf ( x ) \text{erf}(x) erf(x) 是误差函数,定义为:
erf ( x ) = 2 π ∫ 0 x e − t 2 d t \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt erf(x)=π2∫0xe−t2dt
求导过程
GELU 的导数可以表示为:
d d x GELU ( x ) = d d x ( x ⋅ Φ ( x ) ) \frac{d}{dx} \text{GELU}(x) = \frac{d}{dx} \left( x \cdot \Phi(x) \right) dxdGELU(x)=dxd(x⋅Φ(x))
根据乘积法则:
d d x ( x ⋅ Φ ( x ) ) = Φ ( x ) + x ⋅ d d x Φ ( x ) \frac{d}{dx} \left( x \cdot \Phi(x) \right) = \Phi(x) + x \cdot \frac{d}{dx} \Phi(x) dxd(x⋅Φ(x))=Φ(x)+x⋅dxdΦ(x)
我们需要对 Φ ( x ) \Phi(x) Φ(x) 进行求导:
d d x Φ ( x ) = d d x ( 1 2 ( 1 + erf ( x 2 ) ) ) \frac{d}{dx} \Phi(x) = \frac{d}{dx} \left( \frac{1}{2} \left( 1 + \text{erf}\left( \frac{x}{\sqrt{2}} \right) \right) \right) dxdΦ(x)=dxd(21(1+erf(2x)))
由于常数部分导数为零,我们仅对 erf ( x 2 ) \text{erf}\left( \frac{x}{\sqrt{2}} \right) erf(2x) 进行求导:
d d x erf ( x 2 ) = 2 π e − ( x 2 ) 2 ⋅ 1 2 = e − x 2 / 2 2 π \frac{d}{dx} \text{erf}\left( \frac{x}{\sqrt{2}} \right) = \frac{2}{\sqrt{\pi}} e^{-\left( \frac{x}{\sqrt{2}} \right)^2} \cdot \frac{1}{\sqrt{2}} = \frac{e^{-x^2/2}}{\sqrt{2\pi}} dxderf(2x)=π2e−(2x)2⋅21=2πe−x2/2
所以:
d d x Φ ( x ) = 1 2 π e − x 2 / 2 \frac{d}{dx} \Phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dxdΦ(x)=2π1e−x2/2
将其代入前面的公式,我们得到:
d d x GELU ( x ) = Φ ( x ) + x ⋅ 1 2 π e − x 2 / 2 \frac{d}{dx} \text{GELU}(x) = \Phi(x) + x \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dxdGELU(x)=Φ(x)+x⋅2π1e−x2/2
因此,GELU 的梯度为:
d d x GELU ( x ) = 1 2 ( 1 + erf ( x 2 ) ) + x ⋅ 1 2 π e − x 2 / 2 \frac{d}{dx} \text{GELU}(x) = \frac{1}{2} \left( 1 + \text{erf}\left( \frac{x}{\sqrt{2}} \right) \right) + x \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dxdGELU(x)=21(1+erf(2x))+x⋅2π1e−x2/2
Python 代码绘制 GELU 梯度曲线
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf, erfc# 定义 GELU 激活函数
def gelu(x):return 0.5 * x * (1 + erf(x / np.sqrt(2)))# 定义 GELU 激活函数的导数
def gelu_derivative(x):return 0.5 * (1 + erf(x / np.sqrt(2))) + (x * np.exp(-x**2 / 2)) / np.sqrt(2 * np.pi)# 生成 x 轴数据
x = np.linspace(-3, 3, 400)
# 计算 y 轴数据
y = gelu(x)
# 计算 y' 轴数据
dy = gelu_derivative(x)# 绘制 GELU 激活函数和梯度曲线
plt.figure(figsize=(8, 6))
plt.plot(x, y, label='GELU', color='blue')
plt.plot(x, dy, label='GELU Derivative', color='red', linestyle='dashed')
plt.title('GELU Activation Function and Its Derivative')
plt.xlabel('Input')
plt.ylabel('Output')
plt.legend()
plt.grid(True)
plt.show()
运行这段代码将生成一个展示 GELU 激活函数及其梯度的曲线图,有助于直观地理解 GELU 在反向传播中的行为:

相关文章:
【深度学习】GELU激活函数是什么?
torch.nn.GELU 模块在 PyTorch 中实现了高斯误差线性单元(GELU)激活函数。GELU 被用于许多深度学习模型中,包括Transformer,因为它相比传统的 ReLU(整流线性单元)函数能够更好地近似神经元的真实激活行为。…...
如何编译和运行您的第一个Java程序
如何编译和运行您的第一个Java程序 让我们从一个简单的java程序开始。 简单的Java程序 这是一个非常基本的java程序,它会打印一条消息“这是我在java中的第一个程序”。 public class FirstJavaProgram {public static void main(String[] args){System.…...
vscode用vue框架写一个登陆页面
目录 一、创建登录页面 二、构建好登陆页面的路由 三、编写登录页代码 1.添加基础结构 2.给登录页添加背景 3.解决填充不满问题 4.我们把背景的红颜色替换成背景图: 5.在页面中央添加一个卡片来显示登录页面 6.设置中间卡片页面的左侧 7.设置右侧的样式及…...
腾讯云API安全保障措施?有哪些调用限制?
腾讯云API的调用效率如何优化?怎么使用API接口发信? 腾讯云API作为腾讯云提供的核心服务之一,广泛应用于各行各业。然而,随着API应用的普及,API安全问题也日益突出。AokSend将详细探讨腾讯云API的安全保障措施&#x…...
在建设工程合同争议案件中,如何来认定“竣工验收”?
在建设工程合同争议案件中,如何来认定“竣工验收”? 建设工程的最终竣工验收,既涉及在建设单位组织下的五方单位验收,又需政府质量管理部门的监督验收以及竣工验收备案,工程档案还需递交工程所在地的工程档案馆归档。…...
Linux:多线程中的互斥与同步
多线程 线程互斥互斥锁互斥锁实现的原理封装原生线程库封装互斥锁 死锁避免死锁的四种方法 线程同步条件变量 线程互斥 在多线程中,如果存在有一个全局变量,那么这个全局变量会被所有执行流所共享。但是,资源共享就会存在一种问题࿱…...
数据仓库之主题域
数据仓库的主题域(Subject Area)是按照特定业务领域或主题对数据进行分类和组织的方式。每个主题域集中反映一个特定的业务方面,使得数据分析和查询更加清晰和高效。主题域通常与企业的关键业务过程相关,能够帮助用户在数据仓库中…...
【简易版tinySTL】 vector容器
文章目录 基本概念功能思路代码实现vector.htest.cpp 代码详解变量构造函数析构函数拷贝构造operatorpush_backoperator[]insertprintElements 本实现版本 和 C STL标准库实现版本的区别: 基本概念 vector数据结构和数组非常相似,也称为单端数组vector与…...
BRAVE:扩展视觉编码能力,推动视觉-语言模型发展
视觉-语言模型(VLMs)在理解和生成涉及视觉与文本的任务上取得了显著进展,它们在理解和生成结合视觉与文本信息的任务中扮演着重要角色。然而,这些模型的性能往往受限于其视觉编码器的能力。例如,现有的一些模型可能对某…...
使用 Verdaccio 建立私有npm库
网上有很多方法,但很多没标注nginx的版本所以踩了一些坑,下方这个文档是完善后的,对linux不是很熟练,所以不懂linux不会搭建的跟着做就可以了 搭建方法 首先需要一台云服务器 以139.196.226.123为例登录云服务器 下载node cd /usr/local/lib下载node 解压 下载 wget https://…...
个人职业规划(含前端职业+技术线路)
1. 了解自己的兴趣与长处 喜欢擅长的事 职业方向 2. 设定长期目标(5年) 目标内容 建立自己的品牌建立自己的社交网络 适量参加社交活动,认识更多志同道合的小伙伴寻求导师指导 建立自己的作品集 注意事项 每年元旦进行审视和调整永葆积极…...
LeetCode | 344.反转字符串
设置头尾两个指针,依靠中间变量temp交换头尾指针所指元素,头指针后移,尾指针前移,直到头尾指针重合或者头指针在尾指针后面一个元素 class Solution(object):def reverseString(self, s):""":type s: List[str]:r…...
一步一步用numpy实现神经网络各种层
1. 首先准备一下数据 if __name__ "__main__":data np.array([[2, 1, 0],[2, 2, 0],[5, 4, 1],[4, 5, 1],[2, 3, 0],[3, 2, 0],[6, 5, 1],[4, 1, 0],[6, 3, 1],[7, 4, 1]])x data[:, :-1]y data[:, -1]for epoch in range(1000):...2. 实现SoftmaxCrossEntropy层…...
vue学习(二)
9.vue中的数据代理 通过vm对象来代理data对象中的属性操作(读写),目的是为了更加方便操作data中的数据 基本原理:通过Object.defineProperty()把data对象所有属性添加到vm上,为每一个添加到vm上的属性,都增…...
Maven 介绍
Maven open in new window 官方文档是这样介绍的 Maven 的: Apache Maven is a software project management and comprehension tool. Based on the concept of a project object model (POM), Maven can manage a projects build, reporting and documentation fr…...
QT截图程序三-截取自定义多边形
上一篇文章QT截图程序,可多屏幕截图二,增加调整截图区域功能-CSDN博客描述了如何截取,具备调整边缘功能后已经方便使用了,但是与系统自带的程序相比,似乎没有什么特别,只能截取矩形区域。 如果可以按照自己…...
Unity的三种Update方法
1、FixedUpdate 物理作用——处理物理引擎相关的计算和刚体的移动 (1) 调用时机:在固定的时间间隔内,而不是每一帧被调用 (2) 作用:用于处理物理引擎的计算,例如刚体的移动和碰撞检测 (3) 特点:能更准确地处理物理…...
[Python学习篇] Python字典
字典是一种可变的、无序的键值对(key-value)集合。字典在许多编程(Java中的HashMap)任务中非常有用,因为它们允许快速查找、添加和删除元素。字典使用花括号 {} 表示。字典是可变类型。 语法: 变量 {key1…...
react项目中如何书写css
一:问题: 在 vue 项目中,我们书写css的方式很简单,就是在 .vue文件中写style标签,然后加上scope属性,就可以隔离当前组件的样式,但是在react中,是没有这个东西的,如果直…...
PostgreSQL源码分析——绑定变量
这里分析一下函数中应用绑定变量的问题,但实际应用场景中,不推荐这么使用。 prepare divplan2(int,int) as select div($1,$2); execute divplan2(4,2);语法解析 分别分析prepare语句以及execute语句。 gram.y中定义 /******************************…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...
MAZANOKE结合内网穿透技术实现跨地域图像优化服务的远程访问过程
文章目录 前言1. 关于MAZANOKE2. Docker部署3. 简单使用MAZANOKE4. 安装cpolar内网穿透5. 配置公网地址6. 配置固定公网地址总结 前言 在数字世界高速发展的今天,您是否察觉到那些静默增长的视觉数据正在悄然蚕食存储空间?随着影像记录成为日常习惯&…...
