“华为杯”研究生数学建模竞赛2007年-【华为杯】A题:基于自助法和核密度估计的膳食暴露评估模型(附获奖论文)
赛题描述
我国是一个拥有13亿人口的发展中国家,每天都在消费大量的各种食品,这批食品是由成千上万的食品加工厂、不可计数的小作坊、几亿农民生产出来的,并且经过较多的中间环节和长途运输后才为广大群众所消费,加之近年来我国经济发展迅速而环境治理没有能够完全跟上,以至环境污染形势十分严峻;而且随着我国进出口贸易的迅速增加,加上某些国外媒体的炒作,对外食品贸易中的矛盾也开始尖锐起来,因此建立包括食品卫生安全保障体系在内的公共安全应急机制是关系国计民生和对外贸易的重大而迫切的任务。
据初步了解,目前美国和欧盟对公共食品卫生安全实行监控的做法是建立膳食暴露评估数学模型并制成软件,只要将有关的调查或检测数据输入软件,就可以对当时的公共食品卫生安全做出评估。它们所采用的膳食暴露评估数学模型根据现有资料看是分成人群食物摄入量模型、污染物分布模型、风险评估模型三部分。其中人群食物摄入量模型(膳食模型)是用于估计不同地区、不同性别、不同年龄、不同季节、不同劳动强度、不同经济收入的人群各类食品的一天摄入量;污染物分布模型是根据农药、化工等污染行业的污染物排放数据和食品卫生安全监测部门日常对水、农贸市场和大宗食品中污染物的抽查数据以及进出口口岸的检测数据来估计各类食物中各种污染物的含量;风险评估模型则根据前两个模型所提供的数据计算得出全国或某地区人群某些污染物每天摄入量的99.999%的右分位点(把每个人每天某种污染物摄入量看成是一个随机变量),从而能够对某一时刻食品安全风险作出评估。该模型的目标是保证绝大多数(99.999%以上)居民的食品安全,但重点却在对高暴露人群(即污染物摄入量比较大的人群)的监控上,而不仅是居民污染物的平均摄入量。如果用数学的语言严格地表述,就是如果把每个人每天某种污染物摄入量看成是一个随机变量,则我们关心的不仅是它的均值,更关心的是它的99.999%的右分位点。如果这个右分位点的数值明显地小于由食品卫生安全主
相关文章:
“华为杯”研究生数学建模竞赛2007年-【华为杯】A题:基于自助法和核密度估计的膳食暴露评估模型(附获奖论文)
赛题描述 我国是一个拥有13亿人口的发展中国家,每天都在消费大量的各种食品,这批食品是由成千上万的食品加工厂、不可计数的小作坊、几亿农民生产出来的,并且经过较多的中间环节和长途运输后才为广大群众所消费,加之近年来我国经济发展迅速而环境治理没有能够完全跟上,以…...
刷题(第三周)
目录 [CISCN2021 Quals]upload [羊城杯 2020]EasySer [网鼎杯 2020 青龙组]notes [SWPU2019]Web4 [Black Watch 入群题]Web [HFCTF2020]BabyUpload [CISCN2021 Quals]upload 打开界面以后,发现直接给出了源码 <?php if (!isset($_GET["ctf"]))…...
新C++(14):移动语义与右值引用
当你在学习语言的时候,是否经常听到过一种说法,""左边的叫做左值,""右边的叫做右值。这句话对吗?从某种意义上来说,这句话只是说对了一部分。---前言一、什么是左右值?通常认为:左值是一个表示数据的表达式(…...
TCP相关概念
目录 一.滑动窗口 1.1概念 1.2滑动窗口存在的意义 1.3 滑动窗口的大小变化 1.4丢包问题 二.拥塞控制 三.延迟应答 四.捎带应答 五.面向字节流 六.粘包问题 七.TIME_WAIT状态 八.listen第2个参数 九.TCP总结 一.滑动窗口 1.1概念 概念:双方在进行通信时&a…...
MySQL锁篇
MySQL锁篇 一、一条update语句 我们的故事继续发展,我们还是使用t这个表: CREATE TABLE t (id INT PRIMARY KEY,c VARCHAR(100) ) EngineInnoDB CHARSETutf8;现在表里的数据就是这样的: mysql> SELECT * FROM t; —------- | id | c | —…...
SWF (Simple Workflow Service)简介
Amazon Simple Workflow Service (Amazon SWF) 提供了给应用程序异步、分布式处理的流程工具。 SWF可以用在媒体处理、网站应用程序后端、商业流程、数据分析和一系列定义好的任务上。 举个例子,下图表明了一个电商网站的工作流程,其中涉及了程序执行的…...
java(Class 常用方法 获取Class对象六种方式 动态和静态加载 类加载流程)
ClassClass常用方法获取Class对象六种方式哪些类型有Class对象动态和静态加载类加载流程加载阶段连接阶段连接阶段-验证连接阶段-准备连接阶段-解析初始化阶段获取类结构信息Class常用方法 第一步:创建一个实体类 public class Car {public String brand "宝…...
【数据结构】线性表和顺序表
Yan-英杰的主页 悟已往之不谏 知来者之可追 目录 1.线性表 2.顺序表 2.1 静态顺序表 2.2 动态顺序表 2.3移除元素 1.线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线…...
Ubuntu数据库安装(mysql)
##1.下载mysql-apt-config_0.8.22-1_all.deb并且安装 wget https://dev.mysql.com/get/mysql-apt-config_0.8.22-1_all.deb sudo dpkg -i mysql-apt-config_0.8.22-1_all.deb##2.更新apt-updata sudo apt update##3.如果出现如下图情况执行以下命令 [外链图片转存失败,源站可…...
MyBatis-Plus的入门学习
MyBatis-Plus入门学习简介特性快速开始MyBatis-Plus的注解详解Tableld主键生成策略1、数据库自动增长 AUTO2、UUID3、Redis生成id4、MP主键自动生成TableNameTableField自动填充测试方法:update乐观锁select查所有根据id查多个id批量查询简单条件查询(通…...
华为OD机试题 - 内存池(JavaScript)
更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:内存池题目输入输出示例一输入输出说明Code解题思路版权说明华为…...
数据库索引原理
数据库索引的作用是做数据的快速检索,而快速检索实现的本质是数据结构。像二叉树、红黑树、AVL树、B树、B树、哈希等数据结构都可以实现索引,但其中B树效率最高。MySQL数据库索引使用的是B树。二叉树:二叉树中,左子树比根节点小&a…...
字符函数和字符串函数详解(1)
目录前言strlen函数strlensizeofstrcpy函数strcat函数strcmp函数总结前言 最近要调整状态,写的文章质量不佳让大家失望,我现在也在反思我在做什么,我会什么,我学了什么。等我想明白的那天,我一定能跟大家顶峰相见的&a…...
【数据分析:工具篇】NumPy(1)NumPy介绍
【数据分析:工具篇】NumPy(1)NumPy介绍NumPy介绍NumPy的特点数组的基本操作创建数组索引和切片数组运算NumPy介绍 NumPy(Numerical Python)是Python的一个开源的科学计算库,它主要用于处理大规模的多维数组…...
mysql时区问题
设置mysql容器时间与服务器时间一致 问题背景: 今天测试发现一个问题,时间不一致,当工单入库时,其创建时间和更新时间应该是一样的,即使不一样最多只会错几秒的时间;实际上两个时间相差的大概8小时&#…...
磨金石教育摄影技能干货分享|高邮湖上观花海
江苏高邮,说到这里所有人能想到的,就是那烟波浩渺的高邮湖。高邮在旅游方面并不出名,但是这里的自然人文景观绝对不输于其他地方。高邮不止有浩瀚的湖泊,春天的油菜花海同样壮观。春日的午后,与家人相约游玩࿰…...
mysql navicat忘记密码
mysql忘记密码是常用的事情,那么如何解决它呢?1、首先将MySQL的服务关闭,两种方法:(1)打开命令行cmd输入net stop mysql命令即可关闭MySQL服务。(2)打开任务管理器,找到服…...
Git的下载、安装、配置、使用、卸载
前言 我是跟着狂神老师学的。该博客仅用于笔记所用。 下面是老师的B站和笔记 B站:https://www.bilibili.com/video/BV1FE411P7B3?p1&vd_source9266cf72b1f398b63abe0aefe358d7d6 笔记:https://mp.weixin.qq.com/s/Bf7uVhGiu47uOELjmC5uXQ 一、准备工…...
【博客631】监控网卡与进程网络IO使用情况
监控进程的网络IO使用情况 1、vnstat 由于 vnstat 依赖于内核提供的信息,因此执行以下命令来验证内核是否提供了 vnStat 所期望的所有信息: # vnstat --testkernel This test will take about 60 seconds. Everything is ok.不带任何参数的 vnstat 将…...
【Leetcode】【简单】35. 搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: 2 示例 2: 输入:…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...
