RAG实操教程langchain+Milvus向量数据库创建你的本地知识库 二
Miluvs 向量数据库
关于 Milvui
可以参考我的前两篇文章
- • 一篇文章带你学会向量数据库Milvus(一)[1]
- • 一篇文章带你学会向量数据库Milvus(二)[2]
下面我们安装 pymilvus
库
pip install --upgrade --quiet pymilvus
如果你使用的不是 Miluvs
数据库,那也没关系,langchain
已经给我们分装了几十种向量数据库,你选择你需要的数据库即可。本文中我们是系列教程中一篇,所以我们使用 Miluvs
向量库。
Embedding model
这里需要明确的两个功能是:
- •
embedding Model
所做中工作就是将image
、Document
、Audio
等信息向量化. - •
vectorBD
负责保存多维向量
我这里使用 AzureOpenAIEmbeddings
是个收费的模型。有开源的 embedding Model
可以部署在本地使用,如果你的机器性能足够好。如果要本地部署可以参考 docker
部署 llama2
模型 。
这里我使用 AzureOpenAIEmbeddings
, 相关配置我放到了 .env
文件中,并使用 dotenv
加载。
这里各位可以依据自己的情况设定即可。
向量化+存储
上面已经说明了向量库以及embedding model
的关系。我们直接使用 langchain
提供的工具连完成 embedding
和store
。
执行完成上面的代码,我们就将pdf中文档内容保存到 vector_db
中。
字段 vector
就是保存的多维向量。
Milvus search
虽然现在我们还没有使用 LLM
的任何能力,但是我们已经可以使用 vector
的搜索功能了。
similarity_search
与 similarity_search_with_score
的区别就是 similarity_search_with_score
搜索出来会带有一个 score
分值的字段,某些情况下这个 score 很有用。
langchain
不仅仅提供了基础的搜索能力,还有其他的搜索方法,感兴趣的可以去研究下。
RAG Chat
准备工作我们已经就绪,接下来我们使用langchain
构建我们的chat。
既然是聊天也就是我们跟模型的一问一答的形式来体现。这两年LLM
的出现,关于 LLM 的知识里面我们估计最熟悉就是角色设定了。
- • 什么是角色设定:下面 OpenAI 给出的回答:
在大型语言模型(LLM)中,角色设定指的是为AI助手创建一个特定的人格或身份。这个设定包括AI助手的说话风格、知识领域、价值观、行为方式等各个方面。通过这些设定,AI助手可以扮演不同的角色,比如专业的客服、风趣幽默的聊天对象,或是特定领域的专家顾问。
角色设定可以让AI助手的回答更加符合特定的场景和用户的期望。比如一个扮演医生的AI助手,会用专业术语解释病情,给出严谨的建议;而一个扮演朋友的AI助手,会用轻松的语气聊天,给出生活化的提示。
此外,角色设定还可以帮助限定AI助手的行为边界,避免其做出不恰当或有害的回应。设定明确的角色定位,有助于AI助手更好地理解自己的身份和职责,从而提供更加合适和有帮助的回答。
总的来说,角色设定让AI助手的对话更加自然和人性化,让用户获得更好的使用体验。同时它也是引导AI助手行为、确保其安全可控的重要手段。
在 chat中我们同样也需要以及简单的 prompt
:
template = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Question: {question} Context: {context} Answer:
"""
这个prompt
中很明显我们设定了两个变量 question
, context
。
question
:这个会在后面被替换为用户的输入,也就是用户的问题。
context
: 这个变量我们在后面会替换为向量检索出来的内容。
请思考下:我们最后提供给LLm的内容只是用户的问题呢还是问题连带内容一起给到LLM?
chat chain
基于上面的内容我们基本的工作已经完成,下面就是我们基于 langchain
构建chat
。
对于初学者可能有个问题就是:为什么这里有个 AzureChatOpenAI()
的实例 llm
。
这是个好问题,对于初学者会被各种 LLM 搞晕😵💫。
- •
AzureOpenAIEmbeddings()
这是一个负责将文本向化话的model
。 - •
AzureChatOpenAI()
是一个chat
模型。负责聊天的 model。
基于 langchain
的链式调用构建 chat
这里看到 prompt
中的两个变量context
, question
会被替换。
为什么我们要写变量在 prompt
中?
- • 工程化:我们在做LLM相关的工作最重要的就是
prompt
工程。这也是个重要的话题后面再说。 - • 灵活:
测试
输出:
流式请求示例:
curl --location 'http://{ip}/prod/model/api/infillingStreaming' \
--header 'Content-Type: application/json' \
--data '{"model": "codegeex", "prompt": "package problem1;\nclass Solution{\n public int \nremoveDuplicates(int[] nums) {\n int cnt = 1;\n for (int i = 1; \ni < nums.length; ++i)\n if (nums[i] != nums[i - 1]) {\n \n nums[cnt] = nums[i];\n ++cnt;\n }\n return \ncnt;\n }\\n}", "max_tokens": 1024, "temperature": 0.2, "top_p": 0.95, "stream": true
}'
对比pdf中的内容,很明显这个结果就是对的:
总结:
本文主要是 Milvus 向量数据实战总结。
- • LLM 痛点以及解决方案
- • RAG 是什么,为什么选用RAG。
- •
langchain
文档加载器,embedding model
,chat model
- • 文档拆分的注意点,
embedding model
,chat model
区别。 - • chat 示例代码。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
相关文章:

RAG实操教程langchain+Milvus向量数据库创建你的本地知识库 二
Miluvs 向量数据库 关于 Milvui 可以参考我的前两篇文章 • 一篇文章带你学会向量数据库Milvus(一)[1]• 一篇文章带你学会向量数据库Milvus(二)[2] 下面我们安装 pymilvus 库 pip install --upgrade --quiet pymilvus如果你…...

Spring+SpringMVC介绍+bean实例化+依赖注入实战
Spring介绍 Spring是一个轻量级的Java 开发框架,核心是IOC(控制反转)和AOP(面向切面编程) Spring解决了业务层(Service包)与其他各层(表现层,包括Model,Vie…...

【安装笔记-20240616-Linux-为 OpenWrt 自动挂载 Windows 主机共享目录】
安装笔记-系列文章目录 安装笔记-20240616-Linux-为 OpenWrt 自动挂载 Windows 主机共享目录 文章目录 安装笔记-系列文章目录安装笔记-20240616-Linux-为 OpenWrt 自动挂载 Windows 主机共享目录 前言一、软件介绍名称:cifsutils主页官方介绍特点 二、安装步骤测试…...

61.WEB渗透测试-信息收集- WAF、框架组件识别(1)
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:60.WEB渗透测试-信息收集- 端口、目录扫描、源码泄露(8) WAF的识…...

qmt量化交易策略小白学习笔记第45期【qmt编程之期货行情数据--如何获取日线行情、tick行情】
qmt编程之获取期货行情数据 qmt更加详细的教程方法,会持续慢慢梳理。 也可找寻博主的历史文章,搜索关键词查看解决方案 ! 感谢关注,咨询免费开通量化回测与获取实盘权限,欢迎和博主联系! 获取日线行情数…...
c#default 运算符
值类型默认值boolfalsebyte0char‘\0’decimal0.0Mdouble0.0Denum表达式 (E)0 产生的值,其中 E 为 enum 标识符。float0.0Fint0long0Lsbyte0short0struct将所有的值类型字段设置为默认值并将所有的引用类型字段设置为 null 时产生的值。uint0ulong0ushort0引用类型n…...

25计算机考研,这所985有机会!
吉林大学的计算机学科评估是A-,软件是B 实力还是很强的! 考研的专科课代码分别是941和966 其实就是自命题,941是四合一:数据结构,计算机组成与设计,操作系统和计算机网络,这个和408统考的科目…...
SQL 基础入门教程
目录 什么是 SQL? SQL 的基本操作 数据库的创建和删除 表的创建和删除 数据的插入 数据的查询 数据的更新 数据的删除 SQL 的高级操作 表的连接 聚合函数 分组和排序 子查询 视图 索引 SQL 的数据完整性和约束 总结 SQL(Structured Que…...
<Python><paddleocr>基于python使用百度paddleocr实现图片文字识别与替换
前言 本文是使用百度的开源库paddleocr来实现对图片文字的识别,准确度还不错,对图片文字的替换,则利用opencv来完成。 环境配置 系统:windows 平台:visual studio code 语言:python 库:paddleocr、opencv、pyqt5 依赖库安装 本例所需要的库可以直接用pip来安装。 安装…...
小程序开发的费用简介篇
小程序的价格跟很多因素有关系,比如你想要的复杂度、功能多不多等等 今天我就来具体说说开发一款APP/小程序到底需要多少 ❶功能复杂度:功能越多越复杂,开发时间和费用就越高,费用就会高 ❷设计要求:高级的…...
torch.unflod与torch.nn.functional.pad用法
PyTorch 中的两个函数:torch.unfold 和 torch.nn.unfold。它们分别用于不同的目的,让我们分别来理解一下: torch.nn.Unfold 类功能: 类似于函数 torch.unfold,torch.nn.Unfold 类也用于沿着指定维度滑动提取窗口并将每个窗口展平。与函数不同的是,torch.nn.Unfold 是一个…...
江苏 服务器性能监控包含哪些方面?
服务器的性能监控主要是为了确保服务器能够正常运行工作和性能优化的重要手段,接下来就来看一下服务器性能监控所包含的内容有哪些吧! 首先对于服务器的系统资源进行一定的监控,CPU作为服务器的核心组件之一,所以我们要监控CPU的使…...

卓越的 App UI 风格引领潮流
卓越的 App UI 风格引领潮流...

BirdTalk IM集群中消息流转策略讨论
BirdTalk IM集群中消息流转策略讨论 目前群聊的存储策略是1写多读方案;每个群组一个队列,按时间顺序排列,不区分用户; 私聊的存储是写扩散的,每个人都有自己的消息队列,按时间顺序 保存所有的消息&#x…...

重磅!2024年最新影响因子正式发布,附Excel下载
大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。 激动人心的时刻终于来了,2024年影响因子已全面发布!废话不多说,大家一起来看看最新的发布的结果吧! 神刊:CA-A CANCER JOURNA…...

【会议征稿】2024年应用计算智能、信息学与大数据国际会议(ACIIBD 2024,7月26-28)
2024年应用计算智能、信息学与大数据国际学术会议(ACIIBD 2024)将于2024年7月26-28日在中国广州举办。会议将聚焦于计算智能及其应用、信息、大数据等相关的研究领域, 广泛邀请国内外知名专家学者,共同探讨相关学科领域的最新发展…...

【代码发布】Quantlab4.3:lightGBM应用于全球大类资产的多因子智能策略(代码+数据)
原创文章第566篇,专注“AI量化投资、世界运行的规律、个人成长与财富自由"。 昨天,Quantlab整合Alpha158因子集,为机器学习大类资产配置策略做准备(代码数据),我们完成了因子集构建,并尝试…...

【毕业设计】Django 校园二手交易平台(有源码+mysql数据)
此项目有完整实现源码,有需要请联系博主 Django 校园二手交易平台开发项目 项目选择动机 本项目旨在开发一个基于Django的校园二手交易平台,为大学生提供一个安全便捷的二手物品买卖平台。该平台将提供用户注册和认证、物品发布和搜索、交易信息管理等…...

文章自动生成器,在线AI写作工具
随着人工智能AI技术的发展,AI技术被应用到越来越多的场景。对于需要创作内容的同学来说,AI写作-文章内容自动生成器是一个非常好的辅助工具。AI写作工具可以提升我们的创作效率,快速的生成文章,然后在根据需求进行调整修改即可。下…...

Matlab初识:什么是Matlab?它的历史、发展和应用领域
目录 一、什么是Matlab? 二、Matlab的历史与发展 三、Matlab的应用领域 四、安装和启动Matlab 五、界面介绍 六、第一个Matlab程序 七、总结 一、什么是Matlab? Matlab 是由 MathWorks 公司开发的一款用于数值计算、可视化以及编程的高级技术计算…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...