当前位置: 首页 > news >正文

生成式AI和LLM的一些基本概念和名词解释

1. Machine Learning

机器学习是人工智能(AI)的一个分支,旨在通过算法和统计模型,使计算机系统能够从数据中学习并自动改进。机器学习算法使用数据来构建模型,该模型可用于预测或决策。机器学习应用于各种领域,包括计算机视觉、自然语言处理、语音识别和欺诈检测等。

2. Deep Learning

深度学习是机器学习的一个子集,使用多层神经网络来模拟人脑的结构和功能,从而实现高级数据处理和特征提取。主要应用于图像识别、语音识别、自然语言处理、自动驾驶等。

3. Generative AI

生成式人工智能是深度学习的一个分支,专注于生成新的数据或内容,如图像、文本、音乐等,模拟人类的创造性过程。

4. Large Language Models (LLMs)

大语言模型是生成式人工智能的一种,专门用于自然语言处理(NLP)任务,通过学习大量的文本数据来生成和理解自然语言。可以用来执行各种任务,例如智能助手、文本翻译、内容生成、对话系统、信息检索等。

以下几点可以更好的描述他们的关系:

  • 机器学习是使计算机能够从数据中学习的AI。
  • 深度学习是使用人工神经网络的机器学习。
  • 生成式人工智能是用于生成新数据或内容的机器学习。
  • 大语言模型是在大量文本数据上训练的机器学习模型。

层级关系上看:深度学习是机器学习的一个子集,而生成式人工智能又是深度学习的一个子集,大语言模型则是生成式人工智能在自然语言处理领域的具体应用。

应用领域来看:机器学习覆盖广泛,深度学习用于更复杂的任务,生成式人工智能专注于创造性任务,大语言模型专门处理自然语言。

5. Foundation Models/Base Models

基础模型:具有数十亿参数的大模型,作为构建更专业模型的基础。

6. Prompts

The text given to the model to generate a response.

提供给模型生成响应的文本。

7. Inference

Using the model to generate text based on a given prompt.

使用模型根据给定的提示生成文本的过程。

8. Completion

The output generated by the model, which includes the original prompt and the generated text.

模型生成的输出,包括原始prompt和生成的文本。

9. Context Window

The space available for the prompt, typically large enough for a few thousand words.

提示可用的空间,通常足够容纳几千个单词(不同的模型容量不同)。

10. Prompt Engineering

Using natural language instructions to guide the LLM to perform tasks.

使用自然语言指令引导LLM执行任务。

相关文章:

生成式AI和LLM的一些基本概念和名词解释

1. Machine Learning 机器学习是人工智能(AI)的一个分支,旨在通过算法和统计模型,使计算机系统能够从数据中学习并自动改进。机器学习算法使用数据来构建模型,该模型可用于预测或决策。机器学习应用于各种领域&#x…...

python项目(课设)——飞机大战小游戏项目源码(pygame)

主程序 import pygame from plane_sprites import * class PlaneGame: """ 游戏类 """ def __init__(self): print("游戏初始化") # 初始化字体模块 pygame.font.init() # 创建游戏…...

Chatgpt教我打游戏攻略

宝可梦朱 我在玩宝可梦朱的时候,我的同行队伍里有黏美儿,等级为65,遇到了下雨天但是没有进化,为什么呢? 黏美儿(Goomy)要进化为黏美龙(Goodra),需要满足以下…...

最全信息收集工具集

吉祥学安全知识星球🔗除了包含技术干货:Java代码审计、web安全、应急响应等,还包含了安全中常见的售前护网案例、售前方案、ppt等,同时也有面向学生的网络安全面试、护网面试等。 所有的攻防、渗透第一步肯定是信息收集了&#xf…...

redis类型解析汇总

redis类型解析汇总 介绍数据类型简介主要数据类型:衍生类型: 字符串(String)底层设计原理图例设计优势字符串使用方法设置字符串值获取字符串值获取和设置部分字符串获取字符串长度追加字符串设置新值并返回旧值递增/递减同时设置…...

Unity3d自定义TCP消息替代UNet实现网络连接

以前使用UNet实现网络连接,Unity2018以后被弃用了。要将以前的老程序升到高版本,最开始打算使用Mirro,结果发现并不好用。那就只能自己写连接了。 1.TCP消息结构 (1). TCP消息是按流传输的,会发生粘包。那么在发射和接收消息时就需要对消息进行打包和解包。如果接收的消息…...

git fetch 和 git pull区别

git branch //查看本地所有分支 git branch -r //查看远程所有分支 git branch -a //查看本地和远程的所有分支 git branch <branchname> //新建分支 git branch -d <branchname> //删除本地分支 git branch -d -r <branchname> //删除远程分支&#x…...

冲击2024年CSDN博客之星TOP1:CSDN文章质量分查询在哪里?

文章目录 一&#xff0c;2023年博客之星规则1&#xff0c;不高的入围门槛2&#xff0c;[CSDN博文质量分测评地址](https://www.csdn.net/qc) 二&#xff0c;高分秘籍1&#xff0c;要有目录2&#xff0c;文章长度要足够&#xff0c;我的经验是汉字加代码至少1000字。3&#xff0…...

高性能并行计算华为云实验一:MPI矩阵运算

目录 一、实验目的 二、实验说明 三、实验过程 3.1 创建矩阵乘法源码 3.1.1 实验说明 3.1.2 实验步骤 3.2 创建卷积和池化操作源码 3.2.1 实验说明 3.2.2 实验步骤 3.3 创建Makefile文件并完成编译 3.4 建立主机配置文件与运行监测 四、实验结果与分析 4.1 矩阵乘法…...

库卡机器人减速机维修齿轮磨损故障

一、KUKA机器人减速器齿轮磨损故障的原因 1. 润滑不足&#xff1a;润滑油不足或质量不佳可能导致齿轮磨损。 2. 负载过重&#xff1a;超过库卡机械臂减速器额定负载可能导致齿轮磨损。 3. 操作不当&#xff1a;未按照说明书操作可能导致KUKA机器人减速器齿轮磨损。 4. 维护不足…...

【C/C++】我自己提出的数组探针的概念,快来围观吧

数组探针 在许多编程语言中如果涉及到数组那么就可以使用这个东西&#xff0c;便于遍历数组 中文名 数组探针 外文名 arrProbe 适用领域 大数据 所属学科 软件技术、编程 提出者 董翔 目录 1 概述2 工作原理3 应用场景 ▪ 数据处理和分析▪ 图像处理▪ 游戏开发▪…...

ArcGIS图斑分区(组)排序—从上到下从左到右

​​ 点击下方全系列课程学习 点击学习—>ArcGIS全系列实战视频教程——9个单一课程组合系列直播回放 ArcGIS图斑分区&#xff08;组&#xff09;从上到下从左到右排序 是之前的内容的升级 GIS技巧100例——12ArcGIS图斑空间排序 关于今天的内容 我们在19年已经和大家分…...

React useRef 组件内及组件传参使用

保存变量&#xff0c; 改变不引起渲染 import { useRef} from react; const dataRef useRef(null) ... dataRef.current setTimeout(()>console.log(...),1000)绑定dom const inputRef useRef(null) <input ref {inputRef} />绑定dom列表 - ref 回调 const ite…...

Intelij IDEA中Mapper.xml无法构建到资源目录的问题

问题场景&#xff1a; 在尝试把原本在eclipse上的Java Web项目转移至Intelij idea上时&#xff0c;在配置文件均与eclipse一致的情况下出现了如下报错&#xff1a; org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): cn.umbrella.crm_core.…...

2024.6.23周报

目录 摘要 ABSTRACT 一、文献阅读 一、题目 二、摘要 三、网络架构 四、创新点 五、文章解读 1、Introduction 2、Method 3、实验 4、结论 二、代码实验 总结 摘要 本周阅读了一篇题目为NAS-PINN: NEURAL ARCHITECTURE SEARCH-GUIDED PHYSICS-INFORMED NEURAL N…...

鸿蒙实战开发:网络层的艺术——优雅封装与搭建指南(中)

前言 在鸿蒙开发的广袤天地中&#xff0c;网络层的搭建与封装无疑是构建高效、稳定应用的基石。继上篇的探索之后&#xff0c;本文将继续深入网络层的优化之旅&#xff0c;揭秘如何通过类型转换器、请求查询附加器以及丰富的常量参数&#xff0c;将网络层的构建艺术推向一个新…...

docker in docker 连私有仓库时报错 https

背景 jenkins 是使用 docker 方式部署的, 在 jenkins中又配置了 docker 的命令, 使用的宿主机的 docker 环境, 在jenkins 中执行 docker 相关命令的时候报错 jenkinse0e7b943b6e4:/$ docker login -u admin -p Harbor12345 172.16.100.15:80 WARNING! Using --password via t…...

mac怎么压缩pdf文件,苹果电脑怎么压缩pdf文件大小

在当今数字化时代&#xff0c;PDF文件已成为广泛使用的文档格式之一。然而&#xff0c;PDF 文件可能会因其包含的图像、图形和其他元素而导致文件较大&#xff0c;这可能会影响文件的传输、存储和共享。因此&#xff0c;对 PDF 文件进行压缩以减小其文件大小是很有必要的。今天…...

兴顺物流管理系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;驾驶员管理&#xff0c;物流资讯管理&#xff0c;车辆管理&#xff0c;基础数据管理 员工账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;物流资讯管理&…...

力扣(2024.06.21)

1. 54——螺旋矩阵 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。 标签&#xff1a;数组&#xff0c;矩阵&#xff0c;模拟 代码&#xff1a; class Solution:def spiralOrder(self, matrix: List[List[int]]) -&…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...