当前位置: 首页 > news >正文

数学建模系列(3/4):典型建模方法

目录

引言

1. 回归分析

1.1 线性回归

基本概念

Matlab实现

1.2 多元回归

基本概念

Matlab实现

1.3 非线性回归

基本概念

Matlab实现

2. 时间序列分析

2.1 时间序列的基本概念

2.2 移动平均

基本概念

Matlab实现

2.3 指数平滑

基本概念

Matlab实现

2.4 ARIMA模型

基本概念

Matlab实现

3. 优化模型

3.1 线性规划

基本概念

Matlab实现

3.2 非线性规划

基本概念

Matlab实现

4. 微分方程模型

4.1 常微分方程模型

基本概念

Matlab实现

4.2 偏微分方程模型

基本概念

Matlab实现

4.3 微分方程模型的应用案例

案例:传染病模型

结语


引言

在前两篇文章中,我们已经介绍了数学建模的基础知识和入门方法。本篇文章将深入讲解几种典型的数学建模方法,包括回归分析、时间序列分析、优化模型和微分方程模型。这些方法在实际问题中应用广泛,对于理解和解决复杂系统中的问题至关重要。通过详细的案例分析和Matlab代码示例,帮助读者掌握具体的建模技术。

1. 回归分析

1.1 线性回归

基本概念

线性回归用于建立因变量与一个或多个自变量之间的线性关系模型。模型形式为:

Matlab实现

% 样本数据
X = [1; 2; 3; 4; 5];
Y = [2; 3; 5; 6; 8];% 线性回归模型
X_ = [ones(size(X)), X]; % 增加常数项
beta = (X_' * X_) \ (X_' * Y);% 预测
Y_pred = X_ * beta;% 绘图
scatter(X, Y, 'bo');
hold on;
plot(X, Y_pred, 'r-');
xlabel('X');
ylabel('Y');
title('线性回归示例');
legend('数据点', '回归线');

1.2 多元回归

基本概念

多元回归用于研究因变量与多个自变量之间的关系。模型形式为:

Matlab实现

% 样本数据
X1 = [1; 2; 3; 4; 5];
X2 = [2; 3; 4; 5; 6];
Y = [2; 3; 5; 6; 8];% 多元线性回归模型
X_ = [ones(size(X1)), X1, X2];
beta = (X_' * X_) \ (X_' * Y);% 预测
Y_pred = X_ * beta;% 输出回归系数
disp(['回归系数:', num2str(beta')]);

1.3 非线性回归

基本概念

非线性回归用于拟合非线性关系的模型。常用的非线性模型包括指数模型、对数模型、幂模型等。

Matlab实现

% 样本数据
X = [1; 2; 3; 4; 5];
Y = [2; 4.1; 8.3; 16.2; 32.4];% 非线性模型(幂模型):Y = a * X^b
model_func = @(beta, X) beta(1) * X.^beta(2);
beta0 = [1, 1]; % 初始猜测% 非线性回归
beta = nlinfit(X, Y, model_func, beta0);% 预测
Y_pred = model_func(beta, X);% 绘图
scatter(X, Y, 'bo');
hold on;
plot(X, Y_pred, 'r-');
xlabel('X');
ylabel('Y');
title('非线性回归示例');
legend('数据点', '拟合曲线');

2. 时间序列分析

2.1 时间序列的基本概念

时间序列是按照时间顺序排列的一组数据点,用于描述变量随时间的变化趋势。常见的时间序列分析方法包括移动平均、指数平滑和ARIMA模型。

2.2 移动平均

基本概念

移动平均用于平滑时间序列中的短期波动,识别长期趋势。

Matlab实现

% 样本时间序列数据
data = [22, 24, 25, 23, 26, 28, 27, 29, 30, 31];
window_size = 3; % 移动平均窗口大小% 移动平均
moving_avg = movmean(data, window_size);% 绘图
plot(data, 'b*-');
hold on;
plot(moving_avg, 'r-');
xlabel('时间');
ylabel('值');
title('移动平均示例');
legend('原始数据', '移动平均');

2.3 指数平滑

基本概念

指数平滑用于加强对时间序列中较新的数据点的关注,常见的包括单指数平滑、双指数平滑和三指数平滑。

Matlab实现

% 样本时间序列数据
data = [22, 24, 25, 23, 26, 28, 27, 29, 30, 31];
alpha = 0.2; % 平滑系数% 单指数平滑
exp_smooth = zeros(size(data));
exp_smooth(1) = data(1); % 初始值
for t = 2:length(data)exp_smooth(t) = alpha * data(t) + (1 - alpha) * exp_smooth(t-1);
end% 绘图
plot(data, 'b*-');
hold on;
plot(exp_smooth, 'r-');
xlabel('时间');
ylabel('值');
title('单指数平滑示例');
legend('原始数据', '单指数平滑');

2.4 ARIMA模型

基本概念

ARIMA模型用于捕捉时间序列中的自相关结构,是时间序列分析中最常用的方法之一。

Matlab实现

% 样本时间序列数据
data = [22, 24, 25, 23, 26, 28, 27, 29, 30, 31];% 拟合ARIMA模型
model = arima('Constant', 0, 'D', 1, 'Seasonality', 0, 'MALags', 1, 'SMALags', 12);
fit = estimate(model, data');% 预测
forecast_steps = 5;
[Y, YMSE] = forecast(fit, forecast_steps, 'Y0', data');% 绘图
plot([data, Y']);
hold on;
plot(length(data)+1:length(data)+forecast_steps, Y, 'r*-');
xlabel('时间');
ylabel('值');
title('ARIMA模型示例');
legend('原始数据', '预测值');

3. 优化模型

3.1 线性规划

基本概念

线性规划用于求解目标函数在一组线性约束条件下的最大化或最小化问题。

Matlab实现

% 目标函数系数
f = [-1; -1];% 约束矩阵和向量
A = [1, 2; 3, 1];
b = [6; 9];% 下界和上界
lb = [0; 0];
ub = [inf; inf];% 求解线性规划
[x, fval] = linprog(f, A, b, [], [], lb, ub);% 输出结果
disp(['最优解:', num2str(x')]);
disp(['最优值:', num2str(-fval)]);

3.2 非线性规划

基本概念

非线性规划用于求解目标函数和/或约束条件为非线性的优化问题。

Matlab实现

% 目标函数
obj_fun = @(x) x(1)^2 + x(2)^2;% 约束条件
nonlin_con = @(x) deal([], [x(1) + x(2) - 2]);% 初始猜测
x0 = [0.5, 0.5];% 求解非线性规划
options = optimoptions('fmincon', 'Display', 'iter');
[x, fval] = fmincon(obj_fun, x0, [], [], [], [], [], [], nonlin_con, options);% 输出结果
disp(['最优解:', num2str(x)]);
disp(['最优值:', num2str(fval)]);

4. 微分方程模型

4.1 常微分方程模型

基本概念

常微分方程(ODE)用于描述变量随时间变化的动态过程,广泛应用于物理、化学、生物和经济等领域。常用的一阶和二阶微分方程可以分别表示为:

Matlab实现

% 设定初始条件和时间范围
y0 = 1; % 初始值
tspan = [0, 2]; % 时间区间% 定义一阶微分方程
odefun = @(t, y) t * y;% 求解微分方程
[t, y] = ode45(odefun, tspan, y0);% 绘图
plot(t, y, 'b-');
xlabel('时间');
ylabel('y');
title('常微分方程示例');
legend('y(t)');

4.2 偏微分方程模型

基本概念

偏微分方程(PDE)用于描述具有多个独立变量的系统的动态行为,应用于热传导、流体力学、弹性力学等领域。典型的一维热传导方程表示为:

Matlab实现

% 定义空间和时间范围
x = linspace(0, 1, 20);
t = linspace(0, 1, 50);% 定义初始条件
u0 = sin(pi * x);% 设置PDE系数
m = 0;
alpha = 1;
pdefun = @(x,t,u,DuDx) alpha * DuDx;
icfun = @(x) sin(pi * x);
bcfun = @(xl,ul,xr,ur,t) [ul; ur];% 求解PDE
sol = pdepe(m, pdefun, icfun, bcfun, x, t);% 绘图
surf(x, t, sol);
xlabel('位置 x');
ylabel('时间 t');
zlabel('温度 u');
title('一维热传导方程的数值解');

4.3 微分方程模型的应用案例

案例:传染病模型

问题描述:研究一种传染病在一个封闭社区中的传播情况。

构建SIR模型
SIR模型是一个常用的传染病模型,包含三个变量:易感者(Susceptible),感染者(Infected)和康复者(Recovered)。模型的微分方程为:

Matlab实现

% 参数设置
beta = 0.3; % 感染率
gamma = 0.1; % 康复率
N = 1000; % 总人口
I0 = 1; % 初始感染者
R0 = 0; % 初始康复者
S0 = N - I0 - R0; % 初始易感者
y0 = [S0, I0, R0]; % 初始条件% 定义SIR模型的微分方程
sir_ode = @(t, y) [-beta * y(1) * y(2) / N;beta * y(1) * y(2) / N - gamma * y(2);gamma * y(2)];% 时间范围
tspan = [0, 160];% 求解微分方程
[t, y] = ode45(sir_ode, tspan, y0);% 绘图
plot(t, y(:, 1), 'b-', t, y(:, 2), 'r-', t, y(:, 3), 'g-');
xlabel('时间 (天)');
ylabel('人数');
title('SIR模型传染病传播模拟');
legend('易感者', '感染者', '康复者');

通过该案例,我们展示了SIR模型的构建和求解方法,读者可以根据实际情况调整参数,进一步探讨传染病传播的动态行为。

结语

在本篇文章中,我们详细介绍了几种典型的数学建模方法,包括回归分析、时间序列分析、优化模型和微分方程模型。通过具体的例子和Matlab代码示例,读者可以更好地理解这些方法的实际应用和实现过程。希望通过这些基础知识,读者能够在实际问题中灵活运用这些建模方法,解决复杂的系统问题。

相关文章:

数学建模系列(3/4):典型建模方法

目录 引言 1. 回归分析 1.1 线性回归 基本概念 Matlab实现 1.2 多元回归 基本概念 Matlab实现 1.3 非线性回归 基本概念 Matlab实现 2. 时间序列分析 2.1 时间序列的基本概念 2.2 移动平均 基本概念 Matlab实现 2.3 指数平滑 基本概念 Matlab实现 2.4 ARIM…...

AI播客下载:Machine Learning Street Talk(AI机器学习)

该频道由 Tim Scarfe 博士、Yannic Kilcher 博士和 Keith Duggar 博士管理。 他们做了出色的工作,对每个节目进行了彻底的研究,并与机器学习行业中一些受过最高教育、最全面的嘉宾进行了双向对话。 每一集都会教授一些新内容,并且提供未经过滤…...

鱼缸补水器工作原理是什么

鱼缸补水器是一种应用广泛的智能设备,主要用于自动监测和补充鱼缸内的水位,以确保鱼类生存环境的稳定。其工作原理简单而高效,为饲主提供了方便和安全的使用体验。 该补水器通常由两部分组成:控制器和吸盘。首先,用户…...

Linux-Tomcat服务配置到系统服务

目录 前言一、系统环境二、配置步骤step1 了解环境的安装路径step2 配置生成tomcat.pid文件step3 配置tomcat.service文件 三、测试systemctl命令管理Tomcat服务3.1 systemctl命令启动Tomcat服务3.2 systemctl命令查看Tomcat服务3.3 systemctl命令关闭Tomcat服务3.4 systemctl命…...

Python抓取高考网图片

Python抓取高考网图片 一、项目介绍二、完整代码一、项目介绍 本次采集的目标是高考网(http://www.gaokao.com/gkpic/)的图片,实现图片自动下载。高考网主页如下图: 爬取的流程包括寻找数据接口,发送请求,解析图片链接,向图片链接发送请求获取数据,最后保存数据。 二…...

Vue配置项data

data 目录 data 目录类型介绍关键原理编译过程 Vue2Vue3 📌Vue.js 中的 data(Obj/Function)属性是 Vue 实例的一个配置选项 类型介绍 对象式 对于根实例或者非复用组件,通常直接提供一个对象字面量作为 data 的值。在对象式中…...

在IDEA 2024.1.3 (Community Edition)中创建Maven项目

本篇博客承继自博客:Windows系统Maven下载安装-CSDN博客 Maven版本:maven-3.9.5 修改设置: 首先先对Idea的Maven依赖进行设置;打开Idea,选择“Costomize”,选择最下边的"All settings" 之后找…...

动手学深度学习(Pytorch版)代码实践 -卷积神经网络-28批量规范化

28批量规范化 """可持续加速深层网络的收敛速度""" import torch from torch import nn import liliPytorch as lp import matplotlib.pyplot as pltdef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):""&quo…...

Apache Paimon系列之:Append Table和Append Queue

Apache Paimon系列之:Append Table和Append Queue 一、Append Table二、Data Distribution三、自动小文件合并四、Append Queue五、压缩六、Streaming Source七、Watermark Definition八、Bounded Stream 一、Append Table 如果表没有定义主键,则默认为…...

Vue使用vue-esign实现在线签名 加入水印

Vue在线签名 一、目的二、样式三、代码1、依赖2、代码2.1 在线签名组件2.1.1 基础的2.1.2 携带时间水印的 2.2父组件 一、目的 又来了一个问题,直接让我在线签名(还不能存储base64),并且还得上传,我直接***违禁词。 好…...

与码无关:分数限制下,选好专业还是选好学校?

本文的目标读者:24届的高考生和家长。 写这篇非技术性文章,是因为我看到了24届考生和21年的我同样迷茫。 事先声明,本文带有强烈的个人思考色彩,可能会引起不适,如有不同观点,欢迎在评论区讨论。 一、前言…...

什么是负载均衡技术?

随着网络技术的快速发展,互联网行业也越来越广泛,人们的日常生活中也离不开网络技术,大量的用户进行浏览访问网站时,企业会使用负载均衡技术,降低当前网站的负载,以此来提高网站的访问速度。 今天小编就来给…...

存在重复元素Ⅱ python3

存在重复元素Ⅱ 问题描述解题思路代码实现复杂度 问题描述 给你一个整数数组 nums 和一个整数 k &#xff0c;判断数组中是否存在两个 不同的索引 i 和 j &#xff0c;满足 nums[i] nums[j] 且 abs(i - j) < k 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff…...

【CV炼丹师勇闯力扣训练营 Day13:§6二叉树1】

CV炼丹师勇闯力扣训练营 代码随想录算法训练营第13天 二叉树的递归遍历 二叉树的迭代遍历、统一迭代 二叉树的层序遍历 一、二叉树的递归遍历&#xff08;深度优先搜索&#xff09; 【递归步骤】 1.确定递归函数的参数和返回值&#xff1a;确定哪些参数是递归的过程中需要处理…...

代码随想录算法训练营第46天 [ 121. 买卖股票的最佳时机 122.买卖股票的最佳时机II 123.买卖股票的最佳时机III ]

代码随想录算法训练营第46天 [ 121. 买卖股票的最佳时机 122.买卖股票的最佳时机II 123.买卖股票的最佳时机III ] 一、121. 买卖股票的最佳时机 链接: 代码随想录. 思路&#xff1a;dp[i][0] 第i天持有股票的最大利润 dp[i][1] 第i天不持有股票的最大利润 做题状态&#xff1a;…...

基于IDEA的Maven简单工程创建及结构分析

目录 一、用 mvn 命令创建项目 二、用 IDEA 的方式来创建 Maven 项目。 &#xff08;1&#xff09;首先在 IDEA 下的 Maven 配置要已经确保完成。 &#xff08;2&#xff09;第二步去 new 一个 project &#xff08;创建一个新工程&#xff09; &#xff08;3&#xff09;…...

解锁空间数据奥秘:ArcGIS Pro与Python双剑合璧,处理表格数据、矢量数据、栅格数据、点云数据、GPS数据、多维数据以及遥感云平台数据等

ArcGISPro提供了用户友好的图形界面&#xff0c;适合初学者快速上手进行数据处理和分析。它拥有丰富的工具和功能&#xff0c;支持各种数据格式的处理和分析&#xff0c;适用于各种规模的数据处理任务。ArcGISPro在地理信息系统&#xff08;GIS&#xff09;领域拥有广泛的应用&…...

后端路线指导(4):后端春招秋招经验分享

后端春招&秋招经验分享 春招(暑期实习) /秋招是应届生非常重要的应聘时间,每一个想就业的同学一定要有所了解! 本篇内容&#xff0c;老白将与大家分享暑期实习和秋招如何应对招聘的个人经验&#xff0c;希望每个同学看完都能有所收获! 首先说明一下老白对于面试核心竞争力的…...

面完小红书算法岗,心态崩了。。。

暑期实习基本结束了&#xff0c;校招即将开启。 不同以往的是&#xff0c;当前职场环境已不再是那个双向奔赴时代了。求职者在变多&#xff0c;HC 在变少&#xff0c;岗位要求还更高了。提前准备才是完全之策。 最近&#xff0c;我们又陆续整理了很多大厂的面试题&#xff0c…...

Android 断点续传进阶之多线程下载

今天继续下载的风骚走位内容—多线程多文件断点续传 Android 断点续传基础之单线程下载&#xff1a;http://blog.csdn.net/qq_27489007/article/details/53897653 效果图&#xff1a; 文件关系&#xff1a; 所需内容 多文件下载列表的显示 启动多个线程分段下载 使用通知栏…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...

CppCon 2015 学习:Time Programming Fundamentals

Civil Time 公历时间 特点&#xff1a; 共 6 个字段&#xff1a; Year&#xff08;年&#xff09;Month&#xff08;月&#xff09;Day&#xff08;日&#xff09;Hour&#xff08;小时&#xff09;Minute&#xff08;分钟&#xff09;Second&#xff08;秒&#xff09; 表示…...

Xcode 16 集成 cocoapods 报错

基于 Xcode 16 新建工程项目&#xff0c;集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...