当前位置: 首页 > news >正文

动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造

14模型构造

import torch
from torch import nn
from torch.nn import functional as F#通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的
net1 = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256,10))
"""
nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 
它维护了一个由Module组成的有序列表。 
注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 
另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 
这实际上是net.__call__(X)的简写。这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
"""
X1 = torch.rand(2,20)
print(net1(X1))#自定义块
class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数paramssuper().__init__()self.hidden = nn.Linear(20, 256) #隐藏层self.out = nn.Linear(256, 10) #输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))
X2 = torch.rand(2,20)  
net2 = MLP()
print(net2(X2))#顺序块
class MySequential(nn.Module):def __init__(self, *args):super().__init__()# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,# 同时列出数据和数据下标for idx, module in enumerate(args):# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员# 变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = module# _modules的主要优点是:# 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。# _modules 是 PyTorch 中 nn.Module 类的一个属性,用于自动管理和存储模型的子模块。def forward(self, X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return XX3 = torch.rand(2,20)
#MySequential的用法与之前为Sequential类编写的代码相同
net3 = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
print(net3(X3))#在前向传播函数中执行代码
class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20,20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 控制流while X.abs().sum() > 1:X = X / 2return X.sum()X4 = torch.rand(2,20)
net4 = FixedHiddenMLP()
print(net4(X4))#混合搭配各种组合块
class NestMLP(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),nn.Linear(64, 32), nn.ReLU())self.linear = nn.Linear(32, 16)def forward(self, X):return self.linear(self.net(X))X5 = torch.rand(2,20)
net5 = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
print(net5(X5))"""
tensor([[ 0.0843, -0.1867,  0.0457,  0.1082, -0.0236, -0.1245, -0.0184,  0.0233,0.1765, -0.1390],[ 0.0129, -0.1441,  0.1156, -0.0327,  0.0044, -0.0510,  0.0715, -0.0162,        0.0137, -0.1148]], grad_fn=<AddmmBackward>)
tensor([[-0.1180,  0.0799, -0.0260,  0.0529,  0.0055, -0.1481,  0.1311, -0.1334,        0.1224,  0.0713],[-0.0610,  0.0789, -0.0321,  0.0154,  0.0246, -0.1857,  0.0652, -0.0461,        0.1029,  0.1205]], grad_fn=<AddmmBackward>)
tensor([[-0.0571, -0.1119,  0.0851,  0.1362, -0.0945,  0.0078,  0.2157, -0.1273,        -0.0017,  0.1981],[-0.0049, -0.0103,  0.0114, -0.0101, -0.1034,  0.0204,  0.1531,  0.0481,        0.1361, -0.0403]], grad_fn=<AddmmBackward>)
tensor(0.3121, grad_fn=<SumBackward0>)
tensor(0.1369, grad_fn=<SumBackward0>)
"""

相关文章:

动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造

14模型构造 import torch from torch import nn from torch.nn import functional as F#通过实例化nn.Sequential来构建我们的模型&#xff0c; 层的执行顺序是作为参数传递的 net1 nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256,10)) """ nn.…...

Django 模版转义

1&#xff0c;模版转义的作用 Django模版系统默认会自动转义所有变量。这意味着&#xff0c;如果你在模版中输出一个变量&#xff0c;它的内容会被转义&#xff0c;以防止跨站脚本攻击&#xff08;XSS&#xff09;。例如&#xff0c;如果你的变量包含HTML标签&#xff0c;这些…...

[数据集][目标检测]药片药丸检测数据集VOC+YOLO格式152张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;152 标注数量(xml文件个数)&#xff1a;152 标注数量(txt文件个数)&#xff1a;152 标注类别…...

Android SurfaceFlinger——HWC图层合成器加载(四)

在前面文章中的 Android.bp 文件中,我们可以看到里面加载了图层合成器和图形内存分配器的 HAL 服务,这里篇我们就来详细介绍一下其中的图层合成器——HWC。 一、HWC简介 HWC,全称为 Hardware Composer,是 Android 系统中一个至关重要的组件,位于硬件抽象层(HAL)。它的主…...

OpenCV--图像金字塔

图像金字塔 图像金字塔高斯金字塔拉普拉斯金字塔 图像金字塔 import cv2""" 图像金字塔&#xff1a;同一图像不同分辨率的子图合集 主要用于图像分割 """高斯金字塔 """ 高斯金字塔&#xff1a;通过高斯平滑和亚采样(采样后图像…...

创意产业如何应对AI的挑战。

最近的一个月&#xff0c;音乐领域迎来了一个革命性的变化。一系列音乐大模型轮番上线&#xff0c;它们以惊人的创作能力&#xff0c;将素人生产音乐的门槛降到了最低。这些AI音乐模型的出现&#xff0c;引发了关于AI是否会彻底颠覆音乐圈的讨论。然而&#xff0c;短暂的兴奋过…...

设计模式——工厂方法模式

文章目录 工厂方法模式简介工厂方法模式的组成部分工厂方法模式的结构Factory和Method的含义工厂方法模式的应用场景工厂方法模式的示例1. 文档生成器2. 数据库连接 工厂方法模式简介 工厂方法模式&#xff08;Factory Method Pattern&#xff09;是一种创建型设计模式&#x…...

apksigner jarsigner.md

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、商业变现、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览三、apksigner3.2 为 APK 签名3.3 验证…...

在SQL中使用explode函数展开数组的详细指南

目录 简介示例1&#xff1a;简单数组展开示例2&#xff1a;展开嵌套数组示例3&#xff1a;与其他函数结合使用处理结构体数组示例&#xff1a;展开包含结构体的数组示例2&#xff1a;展开嵌套结构体数组 总结 简介 在处理SQL中的数组数据时&#xff0c;explode函数非常有用。它…...

JavaScript 预编译与执行机制解析

在深入探讨JavaScript预编译与执行机制之前&#xff0c;我们首先需要明确几个基本概念&#xff1a;声明提升、函数执行上下文、全局执行上下文以及调用栈。这些概念共同构成了JavaScript运行时环境的核心组成部分&#xff0c;对于理解代码的执行流程至关重要。本文将围绕这些核…...

多路h265监控录放开发-(12)完成全部开始录制和全部停止录制代码

xviewer.h 新增 public: void StartRecord();//126 开始全部摄像头录制 void StopRecord();//126 停止全部摄像头录制 xviewer.cpp 新增 //视频录制 static vector<XCameraRecord*> records;//126void XViewer::StartRecord() //开始全部摄像头录制 126 {StopRecord…...

Redis源码学习:Redis对象和5种数据类型的工作原理

Redis 提供 5 种基本数据类型&#xff1a;String&#xff08;字符串&#xff09;、List&#xff08;列表&#xff09;、Set&#xff08;集合&#xff09;、Hash&#xff08;哈希&#xff09;、Zset&#xff08;有序集合&#xff09;&#xff0c;这些数据类型可以供用户直接使用…...

从理论到实践掌握UML

统一建模语言&#xff08;UML&#xff09;是软件工程师用来设计软件系统的一种工具&#xff0c;就像是一套图形化的说明书。它让开发团队能够以图形化的方式来理解、设计和开发软件系统&#xff0c;比起用文字来描述&#xff0c;更加直观易懂。本文通过UML实例化的理论和实践相…...

LabVIEW Windows与RT系统的比较与选择

LabVIEW是一种系统设计和开发环境&#xff0c;广泛应用于各类工程和科学应用中。LabVIEW Windows和LabVIEW RT&#xff08;Real-Time&#xff09;是LabVIEW的两个主要版本&#xff0c;分别适用于不同的应用场景。以下从多个角度详细分析两者的区别&#xff0c;并提供选择建议。…...

docker搭建mongo副本集

1、mongo集群分类 MongoDB集群有4种类型&#xff0c;分别是主从复制、副本集、分片集群和混合集群。 MongoDB的主从复制是指在一个MongoDB集群中&#xff0c;一个节点&#xff08;主节点&#xff09;将数据写入并同步到其他节点&#xff08;从节点&#xff09;。主从复制提供…...

关于Pytorch转换为MindSpore的一点建议

一、事先准备 必须要对Mindspore有一些了解&#xff0c;因为这个框架确实有些和其它流程不一样的地方&#xff0c;比如算子计算、训练过程中的自动微分&#xff0c;所以这两个课程要好好过一遍&#xff0c;官网介绍文档最好也要过一遍 1、零基础Mindspore&#xff1a;https://…...

JetBrains IDEA 新旧UI切换

JetBrains IDE 新旧UI切换 IntelliJ IDEA 的老 UI 以其经典的布局和稳定的性能&#xff0c;成为了许多开发者的首选。而新 UI 则在此基础上进行了全面的改进&#xff0c;带来了更加现代化、响应式和高效的用户体验。无论是新用户还是老用户&#xff0c;都可以通过了解和适应这…...

iOS KeychainAccess的了解与使用

KeychainAccess 是一个用于 iOS、macOS、tvOS 和 watchOS 上的 Swift 密钥链访问库。它提供了一个简单且安全的 API,用于在设备的密钥链中存储和检索数据。 KeychainAccess 的一些主要特点包括: 简单易用的 API&#xff1a;该库提供了一个直观的 API,可以轻松地将数据存储和检…...

STM32 Customer BootLoader 刷新项目 (二) 方案介绍

STM32 Customer BootLoader 刷新项目 (二) 方案介绍 文章目录 STM32 Customer BootLoader 刷新项目 (二) 方案介绍1. 需求分析2. STM32 Memery介绍3. BootLoader方案介绍4. 支持指令 1. 需求分析 首先在开始编程之前&#xff0c;我们先详细设计一下BootLoder的方案。 本项目做…...

2-14 基于matlab的GA优化算法优化车间调度问题

基于matlab的GA优化算法优化车间调度问题。n个工作在m个台机器上加工。已知每个工作中工序加工顺序、各工序的加工时间以及每个工件所包含的工序&#xff0c;在满足约束条件的前提下&#xff0c;目的是确定机器上各工件顺序&#xff0c;以保证某项性能指标最优。程序功能说明&a…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...