动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造
14模型构造
import torch
from torch import nn
from torch.nn import functional as F#通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的
net1 = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256,10))
"""
nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类,
它维护了一个由Module组成的有序列表。
注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。
另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。
这实际上是net.__call__(X)的简写。这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
"""
X1 = torch.rand(2,20)
print(net1(X1))#自定义块
class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数paramssuper().__init__()self.hidden = nn.Linear(20, 256) #隐藏层self.out = nn.Linear(256, 10) #输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))
X2 = torch.rand(2,20)
net2 = MLP()
print(net2(X2))#顺序块
class MySequential(nn.Module):def __init__(self, *args):super().__init__()# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,# 同时列出数据和数据下标for idx, module in enumerate(args):# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员# 变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = module# _modules的主要优点是:# 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。# _modules 是 PyTorch 中 nn.Module 类的一个属性,用于自动管理和存储模型的子模块。def forward(self, X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return XX3 = torch.rand(2,20)
#MySequential的用法与之前为Sequential类编写的代码相同
net3 = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
print(net3(X3))#在前向传播函数中执行代码
class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20,20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 控制流while X.abs().sum() > 1:X = X / 2return X.sum()X4 = torch.rand(2,20)
net4 = FixedHiddenMLP()
print(net4(X4))#混合搭配各种组合块
class NestMLP(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),nn.Linear(64, 32), nn.ReLU())self.linear = nn.Linear(32, 16)def forward(self, X):return self.linear(self.net(X))X5 = torch.rand(2,20)
net5 = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
print(net5(X5))"""
tensor([[ 0.0843, -0.1867, 0.0457, 0.1082, -0.0236, -0.1245, -0.0184, 0.0233,0.1765, -0.1390],[ 0.0129, -0.1441, 0.1156, -0.0327, 0.0044, -0.0510, 0.0715, -0.0162, 0.0137, -0.1148]], grad_fn=<AddmmBackward>)
tensor([[-0.1180, 0.0799, -0.0260, 0.0529, 0.0055, -0.1481, 0.1311, -0.1334, 0.1224, 0.0713],[-0.0610, 0.0789, -0.0321, 0.0154, 0.0246, -0.1857, 0.0652, -0.0461, 0.1029, 0.1205]], grad_fn=<AddmmBackward>)
tensor([[-0.0571, -0.1119, 0.0851, 0.1362, -0.0945, 0.0078, 0.2157, -0.1273, -0.0017, 0.1981],[-0.0049, -0.0103, 0.0114, -0.0101, -0.1034, 0.0204, 0.1531, 0.0481, 0.1361, -0.0403]], grad_fn=<AddmmBackward>)
tensor(0.3121, grad_fn=<SumBackward0>)
tensor(0.1369, grad_fn=<SumBackward0>)
"""
相关文章:
动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造
14模型构造 import torch from torch import nn from torch.nn import functional as F#通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的 net1 nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256,10)) """ nn.…...
Django 模版转义
1,模版转义的作用 Django模版系统默认会自动转义所有变量。这意味着,如果你在模版中输出一个变量,它的内容会被转义,以防止跨站脚本攻击(XSS)。例如,如果你的变量包含HTML标签,这些…...
[数据集][目标检测]药片药丸检测数据集VOC+YOLO格式152张1类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):152 标注数量(xml文件个数):152 标注数量(txt文件个数):152 标注类别…...
Android SurfaceFlinger——HWC图层合成器加载(四)
在前面文章中的 Android.bp 文件中,我们可以看到里面加载了图层合成器和图形内存分配器的 HAL 服务,这里篇我们就来详细介绍一下其中的图层合成器——HWC。 一、HWC简介 HWC,全称为 Hardware Composer,是 Android 系统中一个至关重要的组件,位于硬件抽象层(HAL)。它的主…...
OpenCV--图像金字塔
图像金字塔 图像金字塔高斯金字塔拉普拉斯金字塔 图像金字塔 import cv2""" 图像金字塔:同一图像不同分辨率的子图合集 主要用于图像分割 """高斯金字塔 """ 高斯金字塔:通过高斯平滑和亚采样(采样后图像…...
创意产业如何应对AI的挑战。
最近的一个月,音乐领域迎来了一个革命性的变化。一系列音乐大模型轮番上线,它们以惊人的创作能力,将素人生产音乐的门槛降到了最低。这些AI音乐模型的出现,引发了关于AI是否会彻底颠覆音乐圈的讨论。然而,短暂的兴奋过…...
设计模式——工厂方法模式
文章目录 工厂方法模式简介工厂方法模式的组成部分工厂方法模式的结构Factory和Method的含义工厂方法模式的应用场景工厂方法模式的示例1. 文档生成器2. 数据库连接 工厂方法模式简介 工厂方法模式(Factory Method Pattern)是一种创建型设计模式&#x…...
apksigner jarsigner.md
关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、商业变现、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、apksigner3.2 为 APK 签名3.3 验证…...
在SQL中使用explode函数展开数组的详细指南
目录 简介示例1:简单数组展开示例2:展开嵌套数组示例3:与其他函数结合使用处理结构体数组示例:展开包含结构体的数组示例2:展开嵌套结构体数组 总结 简介 在处理SQL中的数组数据时,explode函数非常有用。它…...
JavaScript 预编译与执行机制解析
在深入探讨JavaScript预编译与执行机制之前,我们首先需要明确几个基本概念:声明提升、函数执行上下文、全局执行上下文以及调用栈。这些概念共同构成了JavaScript运行时环境的核心组成部分,对于理解代码的执行流程至关重要。本文将围绕这些核…...
多路h265监控录放开发-(12)完成全部开始录制和全部停止录制代码
xviewer.h 新增 public: void StartRecord();//126 开始全部摄像头录制 void StopRecord();//126 停止全部摄像头录制 xviewer.cpp 新增 //视频录制 static vector<XCameraRecord*> records;//126void XViewer::StartRecord() //开始全部摄像头录制 126 {StopRecord…...
Redis源码学习:Redis对象和5种数据类型的工作原理
Redis 提供 5 种基本数据类型:String(字符串)、List(列表)、Set(集合)、Hash(哈希)、Zset(有序集合),这些数据类型可以供用户直接使用…...
从理论到实践掌握UML
统一建模语言(UML)是软件工程师用来设计软件系统的一种工具,就像是一套图形化的说明书。它让开发团队能够以图形化的方式来理解、设计和开发软件系统,比起用文字来描述,更加直观易懂。本文通过UML实例化的理论和实践相…...
LabVIEW Windows与RT系统的比较与选择
LabVIEW是一种系统设计和开发环境,广泛应用于各类工程和科学应用中。LabVIEW Windows和LabVIEW RT(Real-Time)是LabVIEW的两个主要版本,分别适用于不同的应用场景。以下从多个角度详细分析两者的区别,并提供选择建议。…...
docker搭建mongo副本集
1、mongo集群分类 MongoDB集群有4种类型,分别是主从复制、副本集、分片集群和混合集群。 MongoDB的主从复制是指在一个MongoDB集群中,一个节点(主节点)将数据写入并同步到其他节点(从节点)。主从复制提供…...
关于Pytorch转换为MindSpore的一点建议
一、事先准备 必须要对Mindspore有一些了解,因为这个框架确实有些和其它流程不一样的地方,比如算子计算、训练过程中的自动微分,所以这两个课程要好好过一遍,官网介绍文档最好也要过一遍 1、零基础Mindspore:https://…...
JetBrains IDEA 新旧UI切换
JetBrains IDE 新旧UI切换 IntelliJ IDEA 的老 UI 以其经典的布局和稳定的性能,成为了许多开发者的首选。而新 UI 则在此基础上进行了全面的改进,带来了更加现代化、响应式和高效的用户体验。无论是新用户还是老用户,都可以通过了解和适应这…...
iOS KeychainAccess的了解与使用
KeychainAccess 是一个用于 iOS、macOS、tvOS 和 watchOS 上的 Swift 密钥链访问库。它提供了一个简单且安全的 API,用于在设备的密钥链中存储和检索数据。 KeychainAccess 的一些主要特点包括: 简单易用的 API:该库提供了一个直观的 API,可以轻松地将数据存储和检…...
STM32 Customer BootLoader 刷新项目 (二) 方案介绍
STM32 Customer BootLoader 刷新项目 (二) 方案介绍 文章目录 STM32 Customer BootLoader 刷新项目 (二) 方案介绍1. 需求分析2. STM32 Memery介绍3. BootLoader方案介绍4. 支持指令 1. 需求分析 首先在开始编程之前,我们先详细设计一下BootLoder的方案。 本项目做…...
2-14 基于matlab的GA优化算法优化车间调度问题
基于matlab的GA优化算法优化车间调度问题。n个工作在m个台机器上加工。已知每个工作中工序加工顺序、各工序的加工时间以及每个工件所包含的工序,在满足约束条件的前提下,目的是确定机器上各工件顺序,以保证某项性能指标最优。程序功能说明&a…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
