动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造
14模型构造
import torch
from torch import nn
from torch.nn import functional as F#通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的
net1 = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256,10))
"""
nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类,
它维护了一个由Module组成的有序列表。
注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。
另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。
这实际上是net.__call__(X)的简写。这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
"""
X1 = torch.rand(2,20)
print(net1(X1))#自定义块
class MLP(nn.Module):# 用模型参数声明层。这里,我们声明两个全连接的层def __init__(self):# 调用MLP的父类Module的构造函数来执行必要的初始化。# 这样,在类实例化时也可以指定其他函数参数,例如模型参数paramssuper().__init__()self.hidden = nn.Linear(20, 256) #隐藏层self.out = nn.Linear(256, 10) #输出层# 定义模型的前向传播,即如何根据输入X返回所需的模型输出def forward(self, X):# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。return self.out(F.relu(self.hidden(X)))
X2 = torch.rand(2,20)
net2 = MLP()
print(net2(X2))#顺序块
class MySequential(nn.Module):def __init__(self, *args):super().__init__()# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,# 同时列出数据和数据下标for idx, module in enumerate(args):# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员# 变量_modules中。_module的类型是OrderedDictself._modules[str(idx)] = module# _modules的主要优点是:# 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。# _modules 是 PyTorch 中 nn.Module 类的一个属性,用于自动管理和存储模型的子模块。def forward(self, X):# OrderedDict保证了按照成员添加的顺序遍历它们for block in self._modules.values():X = block(X)return XX3 = torch.rand(2,20)
#MySequential的用法与之前为Sequential类编写的代码相同
net3 = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
print(net3(X3))#在前向传播函数中执行代码
class FixedHiddenMLP(nn.Module):def __init__(self):super().__init__()# 不计算梯度的随机权重参数。因此其在训练期间保持不变self.rand_weight = torch.rand((20,20), requires_grad=False)self.linear = nn.Linear(20, 20)def forward(self, X):X = self.linear(X)# 使用创建的常量参数以及relu和mm函数X = F.relu(torch.mm(X, self.rand_weight) + 1)# 复用全连接层。这相当于两个全连接层共享参数X = self.linear(X)# 控制流while X.abs().sum() > 1:X = X / 2return X.sum()X4 = torch.rand(2,20)
net4 = FixedHiddenMLP()
print(net4(X4))#混合搭配各种组合块
class NestMLP(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),nn.Linear(64, 32), nn.ReLU())self.linear = nn.Linear(32, 16)def forward(self, X):return self.linear(self.net(X))X5 = torch.rand(2,20)
net5 = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
print(net5(X5))"""
tensor([[ 0.0843, -0.1867, 0.0457, 0.1082, -0.0236, -0.1245, -0.0184, 0.0233,0.1765, -0.1390],[ 0.0129, -0.1441, 0.1156, -0.0327, 0.0044, -0.0510, 0.0715, -0.0162, 0.0137, -0.1148]], grad_fn=<AddmmBackward>)
tensor([[-0.1180, 0.0799, -0.0260, 0.0529, 0.0055, -0.1481, 0.1311, -0.1334, 0.1224, 0.0713],[-0.0610, 0.0789, -0.0321, 0.0154, 0.0246, -0.1857, 0.0652, -0.0461, 0.1029, 0.1205]], grad_fn=<AddmmBackward>)
tensor([[-0.0571, -0.1119, 0.0851, 0.1362, -0.0945, 0.0078, 0.2157, -0.1273, -0.0017, 0.1981],[-0.0049, -0.0103, 0.0114, -0.0101, -0.1034, 0.0204, 0.1531, 0.0481, 0.1361, -0.0403]], grad_fn=<AddmmBackward>)
tensor(0.3121, grad_fn=<SumBackward0>)
tensor(0.1369, grad_fn=<SumBackward0>)
"""
相关文章:

动手学深度学习(Pytorch版)代码实践 -卷积神经网络-14模型构造
14模型构造 import torch from torch import nn from torch.nn import functional as F#通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的 net1 nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256,10)) """ nn.…...

Django 模版转义
1,模版转义的作用 Django模版系统默认会自动转义所有变量。这意味着,如果你在模版中输出一个变量,它的内容会被转义,以防止跨站脚本攻击(XSS)。例如,如果你的变量包含HTML标签,这些…...

[数据集][目标检测]药片药丸检测数据集VOC+YOLO格式152张1类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):152 标注数量(xml文件个数):152 标注数量(txt文件个数):152 标注类别…...

Android SurfaceFlinger——HWC图层合成器加载(四)
在前面文章中的 Android.bp 文件中,我们可以看到里面加载了图层合成器和图形内存分配器的 HAL 服务,这里篇我们就来详细介绍一下其中的图层合成器——HWC。 一、HWC简介 HWC,全称为 Hardware Composer,是 Android 系统中一个至关重要的组件,位于硬件抽象层(HAL)。它的主…...

OpenCV--图像金字塔
图像金字塔 图像金字塔高斯金字塔拉普拉斯金字塔 图像金字塔 import cv2""" 图像金字塔:同一图像不同分辨率的子图合集 主要用于图像分割 """高斯金字塔 """ 高斯金字塔:通过高斯平滑和亚采样(采样后图像…...

创意产业如何应对AI的挑战。
最近的一个月,音乐领域迎来了一个革命性的变化。一系列音乐大模型轮番上线,它们以惊人的创作能力,将素人生产音乐的门槛降到了最低。这些AI音乐模型的出现,引发了关于AI是否会彻底颠覆音乐圈的讨论。然而,短暂的兴奋过…...

设计模式——工厂方法模式
文章目录 工厂方法模式简介工厂方法模式的组成部分工厂方法模式的结构Factory和Method的含义工厂方法模式的应用场景工厂方法模式的示例1. 文档生成器2. 数据库连接 工厂方法模式简介 工厂方法模式(Factory Method Pattern)是一种创建型设计模式&#x…...

apksigner jarsigner.md
关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、商业变现、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、apksigner3.2 为 APK 签名3.3 验证…...

在SQL中使用explode函数展开数组的详细指南
目录 简介示例1:简单数组展开示例2:展开嵌套数组示例3:与其他函数结合使用处理结构体数组示例:展开包含结构体的数组示例2:展开嵌套结构体数组 总结 简介 在处理SQL中的数组数据时,explode函数非常有用。它…...

JavaScript 预编译与执行机制解析
在深入探讨JavaScript预编译与执行机制之前,我们首先需要明确几个基本概念:声明提升、函数执行上下文、全局执行上下文以及调用栈。这些概念共同构成了JavaScript运行时环境的核心组成部分,对于理解代码的执行流程至关重要。本文将围绕这些核…...

多路h265监控录放开发-(12)完成全部开始录制和全部停止录制代码
xviewer.h 新增 public: void StartRecord();//126 开始全部摄像头录制 void StopRecord();//126 停止全部摄像头录制 xviewer.cpp 新增 //视频录制 static vector<XCameraRecord*> records;//126void XViewer::StartRecord() //开始全部摄像头录制 126 {StopRecord…...

Redis源码学习:Redis对象和5种数据类型的工作原理
Redis 提供 5 种基本数据类型:String(字符串)、List(列表)、Set(集合)、Hash(哈希)、Zset(有序集合),这些数据类型可以供用户直接使用…...

从理论到实践掌握UML
统一建模语言(UML)是软件工程师用来设计软件系统的一种工具,就像是一套图形化的说明书。它让开发团队能够以图形化的方式来理解、设计和开发软件系统,比起用文字来描述,更加直观易懂。本文通过UML实例化的理论和实践相…...

LabVIEW Windows与RT系统的比较与选择
LabVIEW是一种系统设计和开发环境,广泛应用于各类工程和科学应用中。LabVIEW Windows和LabVIEW RT(Real-Time)是LabVIEW的两个主要版本,分别适用于不同的应用场景。以下从多个角度详细分析两者的区别,并提供选择建议。…...

docker搭建mongo副本集
1、mongo集群分类 MongoDB集群有4种类型,分别是主从复制、副本集、分片集群和混合集群。 MongoDB的主从复制是指在一个MongoDB集群中,一个节点(主节点)将数据写入并同步到其他节点(从节点)。主从复制提供…...

关于Pytorch转换为MindSpore的一点建议
一、事先准备 必须要对Mindspore有一些了解,因为这个框架确实有些和其它流程不一样的地方,比如算子计算、训练过程中的自动微分,所以这两个课程要好好过一遍,官网介绍文档最好也要过一遍 1、零基础Mindspore:https://…...

JetBrains IDEA 新旧UI切换
JetBrains IDE 新旧UI切换 IntelliJ IDEA 的老 UI 以其经典的布局和稳定的性能,成为了许多开发者的首选。而新 UI 则在此基础上进行了全面的改进,带来了更加现代化、响应式和高效的用户体验。无论是新用户还是老用户,都可以通过了解和适应这…...

iOS KeychainAccess的了解与使用
KeychainAccess 是一个用于 iOS、macOS、tvOS 和 watchOS 上的 Swift 密钥链访问库。它提供了一个简单且安全的 API,用于在设备的密钥链中存储和检索数据。 KeychainAccess 的一些主要特点包括: 简单易用的 API:该库提供了一个直观的 API,可以轻松地将数据存储和检…...

STM32 Customer BootLoader 刷新项目 (二) 方案介绍
STM32 Customer BootLoader 刷新项目 (二) 方案介绍 文章目录 STM32 Customer BootLoader 刷新项目 (二) 方案介绍1. 需求分析2. STM32 Memery介绍3. BootLoader方案介绍4. 支持指令 1. 需求分析 首先在开始编程之前,我们先详细设计一下BootLoder的方案。 本项目做…...

2-14 基于matlab的GA优化算法优化车间调度问题
基于matlab的GA优化算法优化车间调度问题。n个工作在m个台机器上加工。已知每个工作中工序加工顺序、各工序的加工时间以及每个工件所包含的工序,在满足约束条件的前提下,目的是确定机器上各工件顺序,以保证某项性能指标最优。程序功能说明&a…...

Program-of-Thoughts(PoT):结合Python工具和CoT提升大语言模型数学推理能力
Program of Thoughts Prompting:Disentangling Computation from Reasoning for Numerical Reasoning Tasks github:https://github.com/wenhuchen/Program-of-Thoughts 一、动机 数学运算和金融方面都涉及算术推理。先前方法采用监督训练的形式,但这…...

ansible setup模块
用于收集有关目标主机的系统和网络信息,并将这些信息存储为一个facts变量,可以在Playbook的后续任务中使用。setup模块可以用来获取主机的操作系统、软件包、IP地址、内存、磁盘和其他硬件信息。这些信息对编写Playbook和进行条件判断非常有用。当你在Pl…...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA的测试用例执行计划(100分) - 三语言AC题解(Python/Java/Cpp)
🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📎在线评测链接 https://app5938.acapp.acwing.com.cn/contest/2/problem/OD…...

NSIS 入门教程 (一)
介绍 大多数应用程序都附带一个安装程序,它将所需的文件复制到正确的文件夹中,创建注册表项,并提供卸载例程以(希望)从计算机中彻底删除应用程序. 有多种解决方案可以为自主开发的应用程序配备安装程序。除了Install …...

cve-2015-3306-proftpd-vulfocus
1.原理 proftp是用于搭建基于ftp协议的应用软件 ProFTPD是ProFTPD团队的一套开源的FTP服务器软件。该软件具有可配置性强、安全、稳定等特点。 ProFTPD 1.3.5中的mod_copy模块允许远程攻击者通过站点cpfr和site cpto命令读取和写入任意文件。任何未经身份验证的客户端都可以…...

超详细!想进华为od的请疯狂看我!
三分钟带你全面了解华为OD 【合同及管理】签约方为科锐国际/外企德科(人力服务公司),劳动合同期为4年,试用期6个月。员工关系合同管理、五险一金、考勤发薪由科锐国际/外企德科负责;定级定薪、员工培训、工作安排、绩…...

MQTT协议与TCP/IP协议在性能上的区别
MQTT协议与TCP/IP协议在性能上的区别主要体现在以下几个方面: 1.协议开销与传输效率: ① MQTT:MQTT协议针对消息传递进行了优化,使用了小型的控制包和变长的包头设计,极大程度地减少了数据传输过程中的冗余和带宽消耗…...

LeetCode 每日一题 2024/6/17-2024/6/23
记录了初步解题思路 以及本地实现代码;并不一定为最优 也希望大家能一起探讨 一起进步 目录 6/17 522. 最长特殊序列 II6/18 2288. 价格减免6/19 2713. 矩阵中严格递增的单元格数6/20 2748. 美丽下标对的数目6/21 LCP 61. 气温变化趋势6/22 2663. 字典序最小的美丽字…...

FlinkCDC pipeline模式 mysql-to-paimon.yaml
flinkcdc 需要引入: source端: flink-cdc-pipeline-connector-mysql-xxx.jar、mysql-connector-java-xxx.jar、 sink端: flink-cdc-pipeline-connector-paimon-xxx.jar flinkcdc官方提供connect包下载地址,pipeline模式提交作业和…...

mysql数据库入门手册
数据库 常见的数据库查看当前用户及其权限创建用户授权用户访问数据库撤销用户权限修改用户密码删除用户增创建一个数据库创建表表中插入数据表中添加字段(三种方式) 删删除表记录删除表字段删除表(三种方式)删除数据库 改修改表名…...