当前位置: 首页 > news >正文

密码学及其应用——为什么选择接近的质数因子对RSA加密算法不安全?

        RSA加密算法是一种广泛使用的非对称加密算法,它的安全性依赖于大整数分解的难度。具体来说,RSA算法生成的公钥包含一个大整数N,这是两个大质数p和q的乘积。然而,如果这两个质数p和q太接近,则可以相对容易地对N进行因式分解,从而破解加密。

1. 质数选择的影响

        在RSA加密算法中,选择的质数p和q不应过于接近。如果p和q的差距很小,那么可以通过以下方法进行因式分解:

1.1 计算t^2 - s^2的值

        假设s = p - qt = p + q(假设p > q)。根据代数恒等式,我们有:

t^2 - s^2 = (p + q)^2 - (p - q)^2

        进一步展开和简化,可以得到:

t^2 - s^2 = 4pq = 4N

1.2 利用这个结果来分解N

        由于t^2 - s^2 = 4N,我们可以通过找到满足这个等式的t和s来尝试分解N。如果能够找到这样的t和s,那么可以利用t和s来计算p和q。具体来说,p和q可以通过解二元一次方程组p + q = tp - q = s来找到。

2. 实际例子

        让我们来看一个具体的例子,通过代码实现上述方法来分解给定的N = 1607363

import mathdef fermat_factor(n):a = math.isqrt(n)b2 = a * a - nb = math.isqrt(b2)while b * b != b2:a += 1b2 = a * a - nb = math.isqrt(b2)p = a + bq = a - breturn p, qN = 1607363
p, q = fermat_factor(N)
print(f"p = {p}, q = {q}")

        运行上述代码后,我们可以得到p和q的值:

p = 1439, q = 1117

        这个例子清楚地展示了为什么在RSA中选择接近的质数因子是不安全的。通过利用p和q过于接近的弱点,我们可以成功分解N并找到质数因子,从而破解RSA加密。

3. 总结

        为了保证RSA加密算法的安全性,质数因子p和q需要选择得足够远离。这不仅增加了因式分解的难度,还确保了加密系统的安全性。上述例子展示了如果质数因子选择不当,攻击者可以通过相对简单的数学方法轻松破解RSA加密。这强调了在密码学中,细节和选择的正确性对安全性的重要性。

相关文章:

密码学及其应用——为什么选择接近的质数因子对RSA加密算法不安全?

RSA加密算法是一种广泛使用的非对称加密算法,它的安全性依赖于大整数分解的难度。具体来说,RSA算法生成的公钥包含一个大整数N,这是两个大质数p和q的乘积。然而,如果这两个质数p和q太接近,则可以相对容易地对N进行因式…...

爱心商城管理系统的设计

管理员账户功能包括:系统首页,个人中心,管理员管理,企业管理,用户管理,论坛管理,商品管理,公告管理,用户捐赠 企业账户功能包括:系统首页,个人中…...

【python】linux下安装chromedriver

首先,安装selenium模块 pip3 install selenium查看系统内chrome版本: google-chrome --version 根据谷歌浏览器版本下载对应的浏览器驱动版本: wget https://storage.googleapis.com/chrome-for-testing-public/126.0.6478.114/linux64/ch…...

Day18—使用Scrapy框架快速开发爬虫

Scrapy是一个强大的Python框架,用于快速开发爬虫程序。它提供了一整套工具来处理网页爬取和数据提取,非常适合于数据挖掘和信息抓取。本文将详细介绍如何使用Scrapy框架,包括创建项目、编写爬虫规则、设置中间件和管道等。 1. Scrapy框架概述 Scrapy框架以其高性能、易用性…...

04--MySQL8.0_JDBC

第一章 JDBC概述 之前我们学习了JavaSE,编写了Java程序,数据保存在变量、数组、集合等中,无法持久化,后来学习了IO流可以将数据写入文件,但不方便管理数据以及维护数据的关系; 后来我们学习了数据库管理软件MySQL,可以方便的管理数据1。 那么如何将它俩结合起来呢?即…...

OPENCV中0x00007FFE5F35F39C发生异常

原因:读取图片时已经为灰度图像,又进行了一次灰度处理cvtColor 解决方法:如上图所示,将cv::imread的第二个参数改为cv::IMREAD_COLOR;或者保留cv::IMREAD_GRAYSCALE,删去后面的cv::cvtColor...

Python 设计模式(第2版) -- 第三部分(行为型模式)

Python 设计模式(第2版) 再介绍下行为型设计模式。 行为型模式,顾名思义,它主要关注的是对象的责任。它们用来处理对象之间的交互,以实现更大的功能。行为型模式建议:对象之间应该能够彼此交互,同时还应该是松散耦合…...

EXCEL数据导入HIVE

引言 本文将论述如何将Windows本地的excel表数据,导入到虚拟机Linux系统中的Hadoop生态中的Hive数据仓库中。 实验准备 DBeaver Hive3.1(Hadoop3.1) excel数据表 实验步骤 一、首先打开虚拟机,启动Hadoop,启动h…...

C语言常用标准头文件

头文件的基础概念 在C的系列语言程序中,头文件(通常扩展名为.h)被大量使用,它通常包含函数、变量、结构体等的声明和定义,以及一些宏定义和类型定义。头文件的主要作用是为了方便管理和重用代码,它可以被多…...

vuejs3用gsap实现动画

效果 gsap官网地址&#xff1a; https://gsap.com/ 安装gsap npm i gsap 创建Gsap.vue文件 <script setup> import {reactive, watch} from "vue"; import gsap from "gsap"; const props defineProps({value:{type:Number,default:0} }) cons…...

企业级-PDF文件下载

作者&#xff1a;fyupeng 技术专栏&#xff1a;☞ https://github.com/fyupeng 项目地址&#xff1a;☞ https://github.com/fyupeng/rpc-netty-framework 留给读者 一、介绍 文件下载在浏览器可以根据响应头设置纯下载和直接打开两种方式。 二、代码 RequestMapping("/…...

00 - React 基础

1. React 基础 安装react指令 可参考&#xff1a; 官网官网使用教程 如&#xff1a; npx create-react-app 项目名 如&#xff1a;npx create-react-app react-redux-proJSX JSX 是一种 JavaScript 的语法扩展&#xff0c;类似于 XML 或 HTML&#xff0c;允许我们在 Java…...

基于WPF技术的换热站智能监控系统17--项目总结

1、项目颜值&#xff0c;你打几分&#xff1f; 基于WPF技术的换热站智能监控系统01--项目创建-CSDN博客 基于WPF技术的换热站智能监控系统02--标题栏实现-CSDN博客 基于WPF技术的换热站智能监控系统03--实现左侧加载动画_wpf控制系统-CSDN博客 基于WPF技术的换热站智能监…...

CI /CD学习

CI/CD概述 CI/CD 是持续集成和持续交付/部署的缩写&#xff0c;旨在简化并加快软件开发生命周期。 持续集成&#xff08;CI&#xff09;是指自动且频繁地将代码更改集成到共享源代码存储库中的做法。持续交付和/或持续部署&#xff08;CD&#xff09;是一个由两部分组成的过程…...

基于matlab的高斯滤波与图像去噪

1 高斯滤波原理 1.1 原理 高斯滤波是一种线性平滑滤波技术&#xff0c;主要用于消除图像中的高斯噪声。它的工作原理可以理解为对整幅图像进行加权平均的过程&#xff0c;即每个像素点的值都由其本身和邻域内的其他像素值经过加权平均后得到。 高斯滤波实质上是一种信号的滤…...

解决 uniapp h5 页面在私有企微iOS平台 间歇性调用uni api不成功问题(uni.previewImage为例)。

demo <template><view class"content"><image class"logo" src"/static/logo.png"></image><button click"previewImage">预览图片</button></view> </template><script> //打…...

Jenkins nginx自动化构建前端vue项目

在现代的Web开发中&#xff0c;Vue.js已经成为一种非常流行的JavaScript框架。为了更高效地管理和部署Vue.js项目&#xff0c;使用自动化构建工具是至关重要的。Jenkins作为一款强大的持续集成和持续部署&#xff08;CI/CD&#xff09;工具&#xff0c;为我们提供了一种便捷的方…...

Devicetree - 删除某个节点或属性

在设备树&#xff08;devicetree&#xff09;中&#xff0c;删除语法用于从现有设备树中删除属性或节点。这通常在设备树覆盖文件&#xff08;DTS&#xff09;或片段文件中完成。该语法使用 /delete-property/ 和 /delete-node/ 指令。 以下是如何使用这些指令的示例&#xff1…...

Xcode will continue when the operation completes

Xcode 15后,连接手机经常出现 Preparing iPhone. Xcode will continue when the operation completes.记录一下解决办法。其他提示&#xff0c;Xcode连接不上手机也可以尝试通过这个方法解决。 注意:最好关闭科学上网再操作。 从Xcode取消iPhone的配对(右键单击 -Unpair Devi…...

Python爬虫-贝壳新房

前言 本文是该专栏的第32篇,后面会持续分享python爬虫干货知识,记得关注。 本文以某房网为例,如下图所示,采集对应城市的新房房源数据。具体实现思路和详细逻辑,笔者将在正文结合完整代码进行详细介绍。接下来,跟着笔者直接往下看正文详细内容。(附带完整代码) 正文 地…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...