当前位置: 首页 > news >正文

代码随想录算法训练营day64 | 98. 所有可达路径

图论理论基础

1、图的种类

整体上一般分为 有向图 和 无向图。

加权有向图,就是图中边是有权值的,加权无向图也是同理。

2、度

无向图中有几条边连接该节点,该节点就有几度

在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。

3、连通性

在图中表示节点的连通情况,我们称之为连通性

连通图和强连通图
  • 在无向图中,任何两个节点都是可以到达的,我们称之为连通图。如果有节点不能到达其他节点,则为非连通图。
  • 在有向图中,任何两个节点是可以相互到达的,我们称之为 强连通图。
连通分量和强连通分量
  • 在无向图中的极大连通子图称之为该图的一个连通分量。
  • 在有向图中极大强连通子图称之为该图的强连通分量。

4、图的构造

一般使用邻接表、邻接矩阵 或者用类来表示。主要是 朴素存储、邻接表和邻接矩阵。

邻接矩阵 使用 二维数组来表示图结构。 邻接矩阵是从节点的角度来表示图,有多少节点就申请多大的二维数组。

邻接矩阵

优点:

  • 表达方式简单,易于理解
  • 检查任意两个顶点间是否存在边的操作非常快
  • 适合稠密图,在边数接近顶点数平方的图中,邻接矩阵是一种空间效率较高的表示方法。

缺点:

  • 遇到稀疏图,会导致申请过大的二维数组造成空间浪费 且遍历 边 的时候需要遍历整个n * n矩阵,造成时间浪费
  • 邻接表 使用 数组 + 链表的方式来表示。 邻接表是从边的数量来表示图,有多少边 才会申请对应大小的链表。
邻接表

优点:

  • 对于稀疏图的存储,只需要存储边,空间利用率高
  • 遍历节点连接情况相对容易

缺点:

  • 检查任意两个节点间是否存在边,效率相对低,需要 O(V)时间,V表示某节点连接其他节点的数量。
  • 实现相对复杂,不易理解

5、图的遍历方式

  • 深度优先搜索(dfs)
  • 广度优先搜索(bfs)

深搜理论基础

关键就两点:

  • 搜索方向,是认准一个方向搜,直到碰壁之后再换方向
  • 换方向是撤销原路径,改为节点链接的下一个路径,回溯的过程

代码框架

void dfs(参数) {if (终止条件) {存放结果;return;}for (选择:本节点所连接的其他节点) {处理节点;dfs(图,选择的节点); // 递归回溯,撤销处理结果}
}

98. 所有可达路径(卡码网)

深搜三部曲
  • 确认递归函数,参数
  • 确认终止条件
  • 处理目前搜索节点出发的路径
邻接矩阵写法
def dfs(graph, x, n, result, path):# 当前遍历的节点x 到达节点n if x == n: # 找到符合条件的一条路径result.append(path[:])returnfor i in range(1, n+1):  # 遍历节点x链接的所有节点if graph[x][i] == 1:  path.append(i)dfs(graph, i, n, result, path)path.pop()if __name__ == "__main__":n, m = map(int, input().strip().split())# 节点编号从1到n,所以申请 n+1 这么大的数组graph = [[0] * (n + 1) for _ in range(n+1)]for _ in range(m):s, t = map(int, input().strip().split())# 使用邻接矩阵 表示无线图,1 表示 s 与 t 是相连的graph[s][t] = 1result = []dfs(graph, 1, n, result, [1])# 输出结果if len(result) == 0:print(-1)for path in result:print(" ".join([str(i) for i in path]))
邻接表写法
def dfs(graph, x, n, result, path):# 当前遍历的节点x 到达节点n if x == n: # 找到符合条件的一条路径result.append(path[:])returnfor i in graph[x]:  # 遍历节点x链接的所有节点path.append(i)dfs(graph, i, n, result, path)path.pop()if __name__ == "__main__":n, m = map(int, input().strip().split())# 节点编号从1到n,所以申请 n+1 这么大的数组graph = [[] for _ in range(n+1)]  # 邻接表for _ in range(m):s, t = map(int, input().strip().split())# 使用邻接表graph[s].append(t)result = []dfs(graph, 1, n, result, [1])# 输出结果if len(result) == 0:print(-1)for path in result:print(" ".join([str(i) for i in path]))

主要在生成图和遍历图的时候不一样

广搜理论基础

广搜的使用场景

广搜的搜索方式就适合于解决两个点之间的最短路径问题。因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。

代码框架
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 表示四个方向
// grid 是地图,也就是一个二维数组
// visited标记访问过的节点,不要重复访问
// x,y 表示开始搜索节点的下标
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {queue<pair<int, int>> que; // 定义队列que.push({x, y}); // 起始节点加入队列visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点while(!que.empty()) { // 开始遍历队列里的元素pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素int curx = cur.first;int cury = cur.second; // 当前节点坐标for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历int nextx = curx + dir[i][0];int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 坐标越界了,直接跳过if (!visited[nextx][nexty]) { // 如果节点没被访问过que.push({nextx, nexty});  // 队列添加该节点为下一轮要遍历的节点visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问}}}}

相关文章:

代码随想录算法训练营day64 | 98. 所有可达路径

图论理论基础 1、图的种类 整体上一般分为 有向图 和 无向图。 加权有向图&#xff0c;就是图中边是有权值的&#xff0c;加权无向图也是同理。 2、度 无向图中有几条边连接该节点&#xff0c;该节点就有几度 在有向图中&#xff0c;每个节点有出度和入度。出度&#xff…...

php上传zip压缩包到服务器并解压,解析压缩包内excel表格数据导入到数据库

需求: 1.需要管理后台将excel表格中的每条单词数据导入到数据库中. 2.每条单词数据对应的图片和音频文件需要上传到服务器中. 为了让客户上传数据方便,考虑了一下决定通过后台上传压缩包的方式实现 测试压缩包: 压缩包的目录结构 管理后台导入教材 public function upload…...

48-5 内网渗透 - JuicyPotato、Pipe Potato提权

Juicy Potato Juicy Potato 与 Rotten Potato(烂土豆) 的原理几乎完全相同,只是在后者的基础上做了扩展,以便更灵活地利用 Rotten Potato。Juicy Potato 不再像 Rotten Potato 那样依赖于一个现有的 Meterpreter,并且可以自定义 COM 对象加载的端口,以及根据系统版本更换…...

Windows C++ 应用软件开发从入门到精通详解

目录 1、引言 2、IDE 开发环境介绍 2.1、Visual Studio 2.2、Qt Creator 3、 C语言特性 3.1、熟悉泛型编程 3.2、了解C/C异常处理 3.3、熟练使用STL容器 3.4、熟悉C11新特性 4、Windows 平台的编程技术与调试技能 4.1、需要掌握的若干编程技术和基础知识 4.2、需…...

Leetcode 3195. Find the Minimum Area to Cover All Ones I

Leetcode 3195. Find the Minimum Area to Cover All Ones I 1. 解题思路2. 代码实现 题目链接&#xff1a;3195. Find the Minimum Area to Cover All Ones I 1. 解题思路 这一题还是挺简单的&#xff0c;只要找到所有1所在的元素的上下左右4个边界&#xff0c;作为目标矩形…...

ONLYOFFICE8.1版本桌面编辑器测评

目录 一、引言 二、界面设计&#xff1a;简洁大方&#xff0c;操作便捷 三、功能评测&#xff1a;全面升级&#xff0c;满足多样需求 四、性能评测&#xff1a;稳定流畅&#xff0c;高效运行 五、总结与展望 ONLYOFFICE官网链接&#xff1a;ONLYOFFICE - 企业在线办公应用…...

线性代数|机器学习-P15矩阵A的低秩变换下的逆矩阵

文章目录 1. 单位矩阵的秩1变换1.1 功能说明1.2 证明 2. 单位矩阵 I n I_n In​的秩k变换3. 一般矩阵A的秩k变换4. 公式用途4.1 求解方程4.2 卡曼滤波 1. 单位矩阵的秩1变换 1.1 功能说明 假设我们有一个单位矩阵I&#xff0c;列向量u,v那么当我们对单位向量I减去秩为1的矩阵…...

强强联合 极光推送(JPush)成为华为生态市场首家推送类SDK服务商

近日&#xff0c;中国领先的客户互动和营销科技服务商&#xff0c;极光&#xff08;Aurora Mobile&#xff0c;纳斯达克股票代码&#xff1a;JG&#xff09;的核心产品极光推送&#xff08;JPush&#xff09;顺利通过华为开发者联盟的多项测试及审核&#xff0c;成为首家在Harm…...

防止在 Qt 中触发信号

在 Qt 中工作时&#xff0c;有时我们需要暂时阻止某些信号的触发。以下是一个经典场景&#xff1a;我们有一个 QCheckBox 对象&#xff0c;当用户勾选或取消勾选时&#xff0c;需要调用一个函数&#xff0c;因此我们将这个函数连接到 stateChanged(int state) 信号。然而&#…...

【UML用户指南】-17-对基本行为建模-交互

目录 1、消息的可视化表示 2、对象与角色 3、链和连接件 4、消息 5、序列 6、创建、修改和撤销 7、表示法 8、常用建模技术 8.1、对控制流建模 8.1.1、基于时间的控制流 8.1.2、基于结构的控制流 在任何有意义的系统中&#xff0c;对象都不是孤立存在的&#xff0c;…...

Java中的类加载器与热部署技术详解

Java中的类加载器与热部署技术详解 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;在软件开发中&#xff0c;特别是在大型应用和服务的开发过程中&#xff0c;类…...

【事件总线】EventBus

文章目录 概述如何使用如何发布消息如何进行消息监听 来源 概述 事件总线是对发布-订阅模式&#xff08;观察者&#xff09;的一种实现&#xff0c;是一种集中式事件处理机制&#xff0c;允许不同的组件之间进行彼此通信而又不需要相互依赖&#xff0c;达到一种解耦的目的。 …...

LeetCode 热题100 --双指针

双指针 b站UP主蜜糖&#xff1a;由于数据特征的有序性&#xff08;大小或者正负&#xff09;&#xff0c;所以可以证明当前节点一定是优于过往节点&#xff0c;从而可以通过数据的维度数量的指针&#xff0c;逐步的迭代收敛最终找到最优解。 283.移动零 相关标签 &#xff1a;…...

从《深入设计模式》一书中学到的编程智慧

软件设计原则 优秀设计的特征 在开始学习实际的模式前&#xff0c;让我们来看看软件架构的设计过程&#xff0c;了解一下需要达成目标与需要尽量避免的陷阱。 代码复用 无论是开发何种软件产品&#xff0c;成本和时间都最重要的两个维度。较短的开发时间意味着可比竞争对…...

Redis 基本配置

Redis的配置文件通常位于 /etc/redis/redis.conf。以下是一些常见的Redis配置选项和它们的说明&#xff1a; 基本配置 1. 绑定地址 bind 127.0.0.1默认情况下&#xff0c;Redis只监听本地接口。如果需要远程访问&#xff0c;可以修改成bind 0.0.0.0&#xff0c;不过这会带来…...

【C++庖丁解牛】函数栈帧的创建与销毁

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 1. 寄存器2. ebp和esp是如…...

Java基础16(集合框架 List ArrayList容器类 ArrayList底层源码解析及扩容机制)

目录 一、什么是集合&#xff1f; 二、集合接口 三、List集合 四、ArrayList容器类 1. 常用方法 1.1 增加 1.2 查找 int size() E get(int index) int indexOf(Object c) boolean contains(Object c) boolean isEmpty() List SubList(int fromindex,int …...

数组:移除元素

参考资料&#xff1a;代码随想录 本题思路&#xff1a;通过快慢指针将两次循环减少到一次 class Solution {public int removeElement(int[] nums, int val) {//0 1 2 2 2 2 3int fast 0;int slow 0;while(fast < nums.length){if(nums[fast] ! val){nums[slow] nums[f…...

胡说八道(24.6.22)——通信杂谈(完结)

上回书说到雷达和香农的信息论&#xff0c;今天来进行完结。 数字幅值调制或幅值键控&#xff08;ASK&#xff09;调制方式是指载波信号的幅值随数字基带信号而变化&#xff0c;因此可以实现将基带信号搬移到载波频段。2ASK是利用代表数字信息0或1的基带矩形脉冲去键控一个连续…...

设计模式原则——里氏替换原则

设计模式原则 设计模式示例代码库地址&#xff1a; https://gitee.com/Jasonpupil/designPatterns 里氏替换原则 继承必须确保父类所拥有的性质在子类中依然成立 与开闭原则不同的是开闭原则可以改变父类原有的功能&#xff0c;里氏替换原则不能修改父类的原有的性质&#…...

详解 ClickHouse 的 SQL 操作

传统关系型数据库&#xff08;以 MySQL 为例&#xff09;的 SQL 语句&#xff0c;ClickHouse 基本都支持 一、插入 --语法&#xff1a; insert into table_name values(xxxxxx),(yyyyyyy),...;insert into table_name select xxxxx from table_name2 where yyyyy;二、更新和删…...

WPF与Winform,你的选择是?

概述 在桌面应用的发展历程中&#xff0c;Winform和WPF作为微软推出的两大框架&#xff0c;各自承载着不同的设计理念和技术特色。Winform以其稳定、成熟的技术基础&#xff0c;长期占据着企业级应用开发的重要地位。而WPF&#xff0c;作为后来者&#xff0c;以其现代化的UI设计…...

基于SpringBoot的实习管理系统设计与实现

你好呀&#xff0c;我是计算机学姐码农小野&#xff01;如果有相关需求&#xff0c;可以私信联系我。 开发语言&#xff1a; Java 数据库&#xff1a; MySQL 技术&#xff1a; SpringBoot框架&#xff0c;B/S模式 工具&#xff1a; MyEclipse&#xff0c;Tomcat 系统展示 …...

编程用什么电脑不卡的:深度解析与推荐

编程用什么电脑不卡的&#xff1a;深度解析与推荐 在编程的世界里&#xff0c;一台流畅不卡的电脑无疑是每个开发者的得力助手。然而&#xff0c;面对市场上琳琅满目的电脑品牌和型号&#xff0c;如何选择一台适合编程的电脑却成为了一个令人困惑的问题。本文将从四个方面、五…...

优先级队列模拟实现

目录 1.堆的概念 2.堆性质堆中的某个元素小于或大于他的左右孩子 3.小根堆实例 4.堆创建 4.1调整思路 4.2向下调整思路 4.3代码实现&#xff08;大根堆&#xff09; 5.堆的删除 6.堆的插入 7.常用接口 7.1PriorityQueue和PriorityBlockingQueue 1.堆的概念 如果有一…...

记一次服务器崩溃事件

今天在安装Jenkins的时候&#xff0c;进行到插件安装这一步&#xff0c;本来一切顺利&#xff0c;结果最后安装完成之后一直进不去网页&#xff0c;显示连接超时&#xff0c;网上搜索了一圈也没发现什么相似的情况&#xff0c;当我疑惑的时候回到Linux控制台&#xff0c;发现命…...

神经网络 #数据挖掘 #Python

神经网络是一种受生物神经元系统启发的人工计算模型&#xff0c;用于模仿人脑的学习和决策过程。它由大量互相连接的节点&#xff08;称为神经元&#xff09;组成&#xff0c;这些节点处理和传递信息。神经网络通常包含输入层、隐藏层&#xff08;可有多个&#xff09;和输出层…...

营销复盘秘籍,6步法让你的活动效果翻倍

在营销的世界中&#xff0c;每一次活动都是一次探险&#xff0c;而复盘就是探险后的宝藏图&#xff0c;指引我们发现问题、提炼经验、优化策略。 想要学习如何复盘&#xff0c;只要了解以下复盘六大步骤&#xff0c;即可不断总结&#xff0c;逐渐走向卓越。 第一步&#xff1…...

Linux下命令行文件创建删除、目录创建删除

在Linux命令行下&#xff0c;文件和目录的创建与删除是通过一系列基础命令完成的&#xff0c;这些命令对于日常的系统管理和文件操作至关重要。 下面将详细介绍这些命令的功能和使用方法。 普通文件的创建与删除 创建文件 touch命令&#xff1a;主要用于创建一个空文件&…...

数字排列问题

题目&#xff1a;有1、2、3、4个数字&#xff0c;能组成多少个互不相同且无重复数字的三位数&#xff1f;都是多少&#xff1f; 代码&#xff1a; #include <stdio.h> int main() { int count 0; // 计数器&#xff0c;记录生成的三位数的数量 // 使用三个嵌套的fo…...