当前位置: 首页 > news >正文

高中数学:数列-解数列不等式问题的常用放缩技巧(重难点)

一、放缩技巧

技巧1

在这里插入图片描述
例题
证明:Sn<1
在这里插入图片描述
解:
在这里插入图片描述
变形
在这里插入图片描述
解:
由于第一种情况,我们证明了Sn<1,n≥1,是从第一项就开始放缩的。
发现,无法精确到 3 4 \frac{3}{4} 43

这时,我们就从第二项开始放缩,最终得解。
如果第二项不行,从第三项。以此类推。最终可得解。
在这里插入图片描述
总结
本题,我们知道前两项和
1 4 + 1 9 = 13 36 \frac{1}{4}+\frac{1}{9}=\frac{13}{36} 41+91=3613
那么,我们可以将题目改成
S n < 23 36 S_n<\frac{23}{36} Sn<3623
这个时候,放缩,就要从第三项开始放缩。

技巧2

在1的基础上,提高放缩精确度。
利用平方差公式,进行放缩。
在这里插入图片描述

例题
在这里插入图片描述
解析:
这里有两个不等号,所以,要证明两次
对于,左边的不等号,我们可以采用技巧1的方式
放缩后,结合二次函数的性质,求出单调性发范围,从而得证
而对于,右边的不等号,我们采用技巧1,就不行了
分析原因
技巧1
n 2 > n ∗ ( n − 1 ) = n 2 − n ,可以看出,误差是一个 n 。 n^2>n*(n-1)=n^2-n,可以看出,误差是一个n。 n2>n(n1)=n2n,可以看出,误差是一个n
那么,我们如何放缩了?
这里含有一个 n 2 n^2 n2,所以,我们可以想到平方差公式,写成两项乘积的形式
从而,可以使用裂项求和法。
可以这样放缩
4 4 n 2 = 4 2 n ∗ 2 n < 4 4 n 2 − 1 = 4 ( 2 n − 1 ) ( 2 n + 1 ) \frac{4}{4n^2}=\frac{4}{2n*2n}<\frac{4}{4n^2-1}=\frac{4}{(2n-1)(2n+1)} 4n24=2n2n4<4n214=(2n1)(2n+1)4
或者
1 n 2 < 1 n 2 − 1 = 1 ( n − 1 ) ( n + 1 ) \frac{1}{n^2}<\frac{1}{n^2-1}=\frac{1}{(n-1)(n+1)} n21<n211=(n1)(n+1)1
这两种放缩方式,都可以解决第二个不等号
放缩技巧都是利用平方差公式
放缩原则:减小误差范围。单项,从误差为n,降到误差为常数C

左边不等号
在这里插入图片描述
右边不等号
在这里插入图片描述
换放缩方案
在这里插入图片描述
从第二项开始放缩:
在这里插入图片描述
总结
上面,我们试了4中放缩方式,现在来说明一下他们之间的精确度
比较他们的大小关系如下:
1 n 2 − n > 1 n 2 − 1 > 4 4 n 2 − 1 > 1 n 2 \frac{1}{n^2-n}>\frac{1}{n^2-1}>\frac{4}{4n^2-1}>\frac{1}{n^2} n2n1>n211>4n214>n21
可以发现
4 4 n 2 − 1 \frac{4}{4n^2-1} 4n214
距离
1 n 2 \frac{1}{n^2} n21
更近,所以,这个放缩更精确。
以此类推

二、数列不等式放缩原则

1、提高放缩通项公式的精确度。
2、从后几项开始放缩。

相关文章:

高中数学:数列-解数列不等式问题的常用放缩技巧(重难点)

一、放缩技巧 技巧1 例题 证明&#xff1a;Sn&#xff1c;1 解&#xff1a; 变形 解&#xff1a; 由于第一种情况&#xff0c;我们证明了Sn&#xff1c;1&#xff0c;n≥1&#xff0c;是从第一项就开始放缩的。 发现&#xff0c;无法精确到 3 4 \frac{3}{4} 43​ 这时&am…...

[图解]企业应用架构模式2024新译本讲解17-活动记录1

1 00:00:01,070 --> 00:00:04,180 下一个我们要说的就是 2 00:00:04,190 --> 00:00:06,740 活动记录模式了 3 00:00:07,640 --> 00:00:11,210 同样是数据源架构模式 4 00:00:12,300 --> 00:00:18,480 里面的一个&#xff0c;活动记录 5 00:00:18,490 --> 00…...

[C++深入] --- malloc/free和new/delete

1 new运算符的拓展 1.1 自由存储区与堆的概念 在C++中,内存区分为5个区,分别是堆、栈、自由存储区、全局/静态存储区、常量存储区。 自由存储区是C++基于new操作符的一个抽象概念,凡是通过new操作符进行内存申请,该内存即为自由存储区。 new操作符从自由存储区(free st…...

Spcok测试代码抛异常场景

测试代码抛异常场景 ‍ class ExceptionSpec extends Specification {def validateService new ValidateService()Unrolldef "验证UserInfo"() {when: "调用校验方法"validateService.validateUser(user)then: "捕获异常并设置需要验证的异常值&qu…...

【漏洞复现】脸爱云一脸通智慧管理平台 SystemMng 管理用户信息泄露漏洞(XVE-2024-9382)

0x01 产品简介 脸爱云一脸通智慧管理平台是一套功能强大&#xff0c;运行稳定&#xff0c;操作简单方便&#xff0c;用户界面美观&#xff0c;轻松统计数据的一脸通系统。无需安装&#xff0c;只需在后台配置即可在浏览器登录。 功能包括:系统管理中心、人员信息管理中心、设备…...

新手如何入门Web3?

一、什么是Web3&#xff1f; Web3是指下一代互联网&#xff0c;它基于区块链技术&#xff0c;致力于将各种在线活动变得更加安全、透明和去中心化。Web3是一个广义的概念&#xff0c;涵盖了包括数字货币、去中心化应用、智能合约等在内的多个方面。它的主要特点包括去中心化、…...

React.FC`<ChildComponentProps>`解释

代码场景 ParentComponent.tsx import React, { useState } from react; import ChildComponent from ./ChildComponent;function ParentComponent() {const [childData, setChildData] useState<string>();const handleChildData (data: string) > { // 可以直接…...

2024-06-24力扣每日一题

链接&#xff1a; 503. 下一个更大元素 II 题意 循环数组&#xff0c;找出每个元素的往后最近且大于它的元素 解&#xff1a; 今天没试暴力啊&#xff0c;大概率是过不了的 思路就是先找到最大的数&#xff0c;最大数的结果肯定是-1&#xff0c;然后倒着遍历数组&#xf…...

pyhon模块以及常用的第三方模块

import my_info as info print(info.name) info.show()from my_info import * print(name) show() pyhon中包的导入 import admin.my_admin as ad # 包名.模块名 admin是包名&#xff0c;my_admin是模块名print(ad.name) print(ad.info())from admin import my_admin as ad # …...

shell脚本—快速修改centos网络配置

shell-文本中自行修改想要的配置 #!/bin/bash# 网卡名称 eth"eth0"# IP 地址 ipaddr"192.168.1.100"# 子网掩码 netmask"255.255.255.0"# 网关 gateway"192.168.1.1"# 写入配置文件 echo "BOOTPROTOstatic" > /etc/sysc…...

线程池概念、线程池的不同创建方式、线程池的拒绝策略

文章目录 &#x1f490;线程池概念以及什么是工厂模式&#x1f490;标准库中的线程池&#x1f490;什么是工厂模式&#xff1f;&#x1f490;ThreadPoolExecutor&#x1f490;模拟实现线程池 &#x1f490;线程池概念以及什么是工厂模式 线程的诞生是因为&#xff0c;频繁的创…...

示例:WPF中如何绑定ContextMenu和Menu

一、目的&#xff1a;开发过程中&#xff0c;有些模块的右键ContextMenu菜单是需要动态显示的&#xff0c;既是根据不同条件显示不同的菜单&#xff0c;很多是通过代码去生成ContextMenu的MenuItem&#xff0c;本文介绍通过绑定的方式去加载ContextMenu&#xff0c;Menu菜单栏的…...

区块链小故事

大灰狼与小白兔 一天兔子妈妈出门了&#xff0c;在大门上安装了一个区块链的门把手&#xff0c;这个门把手只有兔子妈妈、小兔子、以及另一个客人都同意的时候&#xff0c;才会开门&#xff0c;有一天客人a的钥匙丢了&#xff0c;被大灰狼捡到了&#xff0c;大灰狼于是去开门&…...

Java | Leetcode Java题解之第167题两数之和II-输入有序数组

题目&#xff1a; 题解&#xff1a; class Solution {public int[] twoSum(int[] numbers, int target) {int low 0, high numbers.length - 1;while (low < high) {int sum numbers[low] numbers[high];if (sum target) {return new int[]{low 1, high 1};} else i…...

项目训练营第三天

项目训练营第三天 注册登录测试 前面我们编写了用户注册、登录的逻辑代码&#xff0c;每编写完一个功能模块之后&#xff0c;我们都要对该模块进行单元测试&#xff0c;来确保该功能模块的正确性。一般情况下使用快捷键Ctrl Shift Insert&#xff0c;鼠标左击类名可以自动生…...

计算机组成原理 | CPU子系统(1)基本概述

基本结构模型 运算与缓存部件 数据寄存部件 PSW不是很清楚 存储器是什么&#xff1f;属于那个结构里&#xff1f; 时序处理部件 cpu是大脑&#xff0c;控制器是神经元 ①通过硬件产生控制信号 ②通过软件产生控制信号 外频&#xff08;系统时钟信号&#xff09;&#xff0c;…...

无引擎游戏开发(2):最简游戏框架 | EasyX制作井字棋小游戏I

一、EasyX中的坐标系 不同于数理中的坐标系&#xff0c;EasyX中的y轴是竖直向下的 二、渲染缓冲区 之前的程序添加了这三个函数改善了绘图时闪烁的情况: 小球在"画布“上移动的过程就是我们在调用绘图函数&#xff0c;这个”画布“就是渲染缓冲区&#xff0c;先绘制的内…...

排书 IDA*

原题链接 题目描述 给定 n 本书&#xff0c;编号为 1∼n。 在初始状态下&#xff0c;书是任意排列的。在每一次操作中&#xff0c;可以抽取其中连续的一段&#xff0c;再把这段插入到其他某个位置。我们的目标状态是把书按照 1∼n 的顺序依次排列。求最少需要多少次操作。 输…...

playwright录制脚本原理

Paywright录制工具UI 在上一篇博客中介绍了如何从0构建一款具备录制UI测试的小工具。此篇博客将从源码层面上梳理playwright录制原理。当打开playwright vscode插件时&#xff0c;点击录制按钮&#xff0c;会开启一个新浏览器&#xff0c;如下图所示&#xff0c;在新开浏览器页…...

awk脚本监控

awk脚本监控 使用脚本监控内存&#xff0c;cpu和硬盘的根目录&#xff0c;超过80%提示用户&#xff0c;写成函数库的行&#xff0c;每天早上 的8.50分&#xff0c;执行一次脚本 现在脚本中写需要的内容 cpuu () {aa$(top -b -n 1 |awk NR3 {printf "%.F",$2$4})if …...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...