当前位置: 首页 > news >正文

计算机视觉全系列实战教程 (十二):图像分割(阈值分割threshold、分水岭算法watershed的使用步骤、洪水填充floodFill算法的使用)

1.图像分割概述

(1)What(什么是图像分割)

将图像划分为不同的子区域,使得同一子区域具有较高的相似性,不同的子区域具有明显的差异性

(2)Why(对图像进行分割有什么作用)

  • 医学领域:将不同组织分割成不同区域帮助分析病情
  • 军事领域:通过对图像的分割,为自动目标识别提供参数,为飞行器或武器的精准导航提供依据
  • 遥感领域:通过遥感图像分析城市地貌、作物生长情况。此外,云系分析和天气预报都离不开图像分割
  • 交通领域:车辆跟踪和车牌识别
  • 工业领域:零部件分类、质量评估等

(3)Which(有哪些图像分割的方法)

  • 基于阈值的分割方法:利用灰度直方图得到分割的阈值,利用这些阈值将图像分为几个部分,核心思想是认为同一部分的像素是同一个物体。
  • 基于边缘的分割方法:检测图像的边界以实现对图像的分割
  • 基于区域的分割方法:核心思想是将有相似特性的像素集合起来构成区域,将差异性较大的区域进行分裂
  • 基于神经网络的分割方法:这里不多赘言,现在很火…
  • 基于聚类的分割方法:依据像素相似度,使用聚类算法将像素划分为不同类别

2.基于阈值的分割

(1)固定阈值分割

将图像分为两个部分:黑和白两个区域

/*@author @还下着雨ZG
* @brief 固定阈值图像分割
* @param[in] imSrc, 待分割的图像
* @param[out] imSegment, 分割后的图像
* @param[in] threVal, 输入的阈值
* @return, 返回正整数表示图像分割成功,负整数表示失败
**/
int ImgSegmentByGlbThreVal(const cv::Mat& imSrc, cv::Mat& imSegment, int threVal)
{if(imSrc.empty()) return -1;if(threVal<0 || threVal>255) return -2;// 图像预处理cv::Mat imGray;if(imSrc.channels()==1) imGray = imSrc.clone();else if(imSrc.channels() == 3){cv::cvtColor(imSrc, imGray, cv::COLOR_RGB2GRAY);}else{return -3;}cv::GaussianBlur(imGray, imGray, cv::Size(3,3), 0);//全局阈值法cv::threshold(imGray, imSegment, threVal);return 1;
}

阈值分割函数threshold的介绍:

double cv::threshold(cv::Mat &imSrc, //输入图像,应该为单通道cv::Mat &imDst, //分割后的图像,大小和类型和imSrc相同double thresh, //表示阈值double maxval, //最大灰度值,一般设为255int type //阈值化类型,详细介绍如下所示};

参数type的介绍:type是一个枚举类型的数据

THRESH_BINARY = 0, // ( x > thresh ) ? 255 : 0
THRESH_BINARY_INV = 1, // ( x > thresh ) ? 0 : 255
THRESH_TRUNC = 2, // ( x > thresh ) ? thresh : x
THRESH_TOZERO = 3, // ( x < thresh ) ? 0 : x
THRESH_TOZERO = 4, // ( x < thresh ) ? x : 0
THRESH_MASK = 7,
THRESH_OTSU = 8, // 自动处理,图像自适应二值化,常用区间【0-255】

(2)自适应阈值分割

根据图像不同区域的亮度分布计算局部阈值,对于图像的不同区域能够自适应计算不同阈值

void cv::adaptiveThreshold(cv::Mat &imSrc, //输入的源图像cv::Mat &imDst, //输出图像double maxval, //预设满足条件的最大值int adaptMethod, //指定自适应阈值算法类型(ADAPTIVE_MEAN_C或ADAPTIVE_THRESH_GAUSSIAN_C两种)int threshType, //阈值类型(THRESH_BINARY或THRESH_BINARY_INV)int blockSize,  //领域块的大小,用于计算区域阈值(3,5,7 ...)double C, //与算法有关的参数,是一个从均值或加权均值提取的常数,可为负);

使用adaptiveThresh:

/*@author @还下着雨ZG
* @brief 自适应阈值图像分割
* @param[in] imSrc, 待分割的图像
* @param[out] imSegment, 分割后的图像
* @return, 返回正整数表示图像分割成功,负整数表示失败
**/
int ImgSegmentByAdpThre(const cv::Mat& imSrc, cv::Mat& imSegment)
{if (imSrc.empty()) return -1;cv::Mat imGray;if (imSrc.channels() == 1){cv::copyTo(imSrc, imGray, cv::Mat());}else if (imSrc.channels() == 3){cv::cvtColor(imSrc, imGray, cv::COLOR_RGB2GRAY);}else{return -2;}cv::GaussianBlur(imGray, imGray, cv::Size(3, 3), 0);int blockSize = 3;int constValue = 0;cv::adaptiveThreshold(imGray, imSegment, 255, cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY, blockSize,constValue);return 1;
}

在实际使用时,大部分是先通过算子寻找边缘,然后和区域生长融合来分割图像

3.基于区域的分割

有相似特性的像素集合起来构成区域,将差异性较大的区域进行分裂

(1)分水岭算法

A.What(分水岭算法的概念)
将图像看作是测地学上的拓扑地貌,每一个像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域被称为盆地,对应得边界形成分水岭。
每一个局部极小值表面,刺穿一个小孔,然后从小孔浸水,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,两个盆地间形成分水岭。
opencv提供的分水岭算法原型如下:

void cv::watershed(cv::Mat &imBGR, //三通道8bit的彩色图像);

B.How(如何使用分水岭算法对图像进行分割)

  • step01: 图像预处理(灰度化、滤波去噪等)
  • step02: Canny边缘检测
  • step03: 查找轮廓(findContours函数查找轮廓),并把轮廓信息按照不同编号绘制到watershed的第二次参数markers上,相当于标记注水点
  • step04: watershed分水岭算法调用
  • step05: 绘制分割出来的区域
/*@author @还下着雨ZG
* @param[in] imSrc, 输入的源图像
* @param[in] imMarks, 输出图像,分割之后的结果
* @return, 正整数表示成功,负整数表示失败
*/
int ImgDvdWatershed(const cv::Mat& imSrc, cv::Mat& imMarks)
{//step01 图像预处理:灰度+滤波cv::Mat imGray;cv::Mat imGray;if (imSrc.channels() == 1){cv::copyTo(imSrc, imGray, cv::Mat());}else if (imSrc.channels() == 3){cv::cvtColor(imSrc, imGray, cv::COLOR_RGB2GRAY);}else {return -1;}cv::GaussianBlur(imGray, imGray, cv::Size(3, 3), 2); //高斯滤波//Step02 Canny边缘检测cv::Mat imEdg(imGray.size(), CV_8UC1);cv::Canny(imGray, imEdg, 40, 110);//Step03 查找轮廓并绘制轮廓std::vector<std::vector<cv::Point>> vCnts;std::vector<cv::Vec4i> hierarchy;cv::findContours(imEdg, vCnts, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);cv::Mat imContours;if (!imMarks.empty()){imMarks.release();}imMarks = cv::Mat(imGray.size(), CV_32S, cv::Scalar::all(0));int iIdx = 0;int compCount = 0;for (; iIdx >= 0; iIdx = hierarchy[iIdx][0], compCount++){cv::drawContours(imMarks, vCnts, iIdx, cv::Scalar::all(compCount + 1), 1, 8, hierarchy);cv::drawContours(imContours, vCnts, iIdx, cv::Scalar(255), 1, 8, hierarchy);}cv::Mat imRGB;if (imSrc.channels() == 1){cv::cvtColor(imSrc, imRGB, cv::COLOR_GRAY2RGB);}else if (imSrc.channels() == 3){imRGB = imSrc.clone();}//Step04 调用分水岭算法cv::watershed(imRGB, imMarks);//marks既是输入参数又是输出参数imRGB.release();return 1;
}

说明:该函数输出参数imMarks图像,同一区域用相同的数值标识,分水岭用-1标识

(2)洪水填充法分割图像

该算法通常对边缘图像进行操作,可用于分割出比较完整的外轮廓

int cv::floodFill(cv::Mat &imSrc, //输入图像cv::Point seedPt, //填充的起始点cv::Scalar newVal, //填充的像素值cv::Rect *rect=0, //将要重绘区域的最小边界矩形区域cv::Scalar loDiff = cv::Scalar(), //像素值负差的最大值cv::Scalar upDiff = cv::Scalar(), //像素值正差的最大值int flags = 4 //操作标识符);

相关文章:

计算机视觉全系列实战教程 (十二):图像分割(阈值分割threshold、分水岭算法watershed的使用步骤、洪水填充floodFill算法的使用)

1.图像分割概述 (1)What(什么是图像分割) 将图像划分为不同的子区域&#xff0c;使得同一子区域具有较高的相似性&#xff0c;不同的子区域具有明显的差异性 (2)Why(对图像进行分割有什么作用) 医学领域&#xff1a;将不同组织分割成不同区域帮助分析病情军事领域&#xff…...

Linux的免交互

交互&#xff1a;我们发出指令控制程序的运行&#xff0c;程序在接收到指令之后按照指令的效果做出对应的反应。 免交互&#xff1a;间接的通过第三方的方式把指令传送给程序&#xff0c;不用直接的下达指令。 1、here document免交互 ere document免交互&#xff1a;是命令…...

查看es p12证书文件过期方法

查看证书过期时间: openssl pkcs12 -in elastic-certificates.p12 -nokeys -out elastic-certificates.crt (需要输入证书生成时配置密码) openssl x509 -enddate -noout -in elastic-certificates.crt...

1.8 无符号大数加、减运算

作者 李卫明 单位 杭州电子科技大学 1.8 无符号大数加、减运算。程序设计中经常遇到无符号大数加、减运算问题&#xff0c;请在样例程序Ex1.4基础上实现无符号大数减运算。题目要求输入两个无符号大数&#xff0c;保证一个大数不小于第二个大数&#xff0c;输出它们的和、差。…...

Java常用类--包装类

包装类 一方面出于性能方面的考虑&#xff0c;java为数值使用基本类型&#xff0c;而不是对象。基本类型不是对象层次的组成部分&#xff0c;它们不继承Object。 另一方面有时需要创建表示基本类型的对象&#xff0c;例如集合类只处理对象。为了在类中存储基本类型&#xff0c;…...

SpringMvcの拦截器全局异常处理

一、拦截器 我们在网上发贴子的时候如果没有登录&#xff0c;点击发送按钮会提示未进行登录&#xff0c;跳转到登录页面。这样的功能是如何实现的。 1、 拦截器的作用 Spring MVC 的处理器拦截器类似于Servlet开发中的过滤器Filter&#xff0c;用于对处理器进行预处理和后处理…...

JVM虚拟机的组成

一、为什么要学习 JVM &#xff1f; 1. “ ⾯试造⽕箭&#xff0c;⼯作拧螺丝” &#xff0c; JVM 属于⾯试官特别喜欢提问的知识点&#xff1b; 2. 未来在⼯作场景中&#xff0c;也许你会遇到以下场景&#xff1a; 线上系统突然宕机&#xff0c;系统⽆法访问&#xff0c;甚⾄直…...

探索CSS clip-path: polygon():塑造元素的无限可能

在CSS的世界里&#xff0c;clip-path 属性赋予了开发者前所未有的能力&#xff0c;让他们能够以非传统的方式裁剪页面元素&#xff0c;创造出独特的视觉效果。其中&#xff0c;polygon() 函数尤其强大&#xff0c;它允许你使用多边形来定义裁剪区域的形状&#xff0c;从而实现各…...

【华为OD机试B卷】单词接龙(C++/Java/Python)

题目 题目描述 单词接龙的规则是: 可用于接龙的单词首字母必须要前一个单词的尾字母相同;当存在多个首字母相同的单词时,取长度最长的单词,如果长度也相等,则取字典序最小的单词;已经参与接龙的单词不能重复使用。现给定一组全部由小写字母组成单词数组,并指定其中的一个…...

项目实训-vue(十七)

项目实训-vue&#xff08;十七&#xff09; 文章目录 项目实训-vue&#xff08;十七&#xff09;1.概述2.问诊类型3.问诊时间统计4.看诊时间统计 1.概述 本篇博客将记录我在数据统计页面中的工作。因为项目并未实际运行&#xff0c;因此我们拟定了一些数据&#xff0c;并构建了…...

Android10 SystemUI系列 需求定制(二)隐藏状态栏通知图标,锁屏通知,可定制包名,渠道等

一、前言 SystemUI 所包含的界面和模块比较多,这一节主要分享一下状态栏通知图标和通知栏的定制需求:隐藏状态栏通知图标,锁屏通知,可定制包名,渠道等 来熟悉一下Systemui。 二、准备工作 按照惯例先找到核心类。这里提前说一下,这个需求的修改方法更多,笔者这里也只…...

Linux:RAID磁盘阵列

目录 一、RAID&#xff08;磁盘阵列&#xff09; 1.1、概念 1.2、RAID 0&#xff08;条带化存储&#xff09; 1.3、RAID 1&#xff08;镜像存储&#xff09; 1.4、RAID 5 1.5、RAID 6 1.6、RAID 10 (先做镜像&#xff0c;再做条带) 二、创建RAID 2.1、建立RAID 0 …...

MongoDB和AI 赋能行业应用:零售

欢迎阅读“MongoDB 和 AI 赋能行业应用”系列的第三篇。 本系列重点介绍 AI 应用于不同行业的关键用例&#xff0c;涵盖制造业和汽车行业、金融服务、零售、电信和媒体、保险以及医疗保健行业。 利用生成式 AI 技术&#xff08;Gen AI&#xff09;&#xff0c;零售商可以创造…...

MQ~消息队列能力、AMQP协议、现有选择(Kafka、RabbitMQ、RocketMQ 、Pulsar)

消息队列 消息队列看作是一个存放消息的容器&#xff0c;当我们需要使用消息的时候&#xff0c;直接从容器中取出消息供自己使用即可。由于队列 Queue 是一种先进先出的数据结构&#xff0c;所以消费消息时也是按照顺序来消费的。 常⽤的消息队列主要这 五 种&#xff0c;分别…...

开源网安参与编制的《代码大模型安全风险防范能力要求及评估方法》正式发布

​代码大模型在代码生成、代码翻译、代码补全、错误定位与修复、自动化测试等方面为研发人员带来了极大便利的同时&#xff0c;也带来了对安全风险防范能力的挑战。基于此&#xff0c;中国信通院依托中国人工智能产业发展联盟&#xff08;AIIA&#xff09;&#xff0c;联合开源…...

【树状数组 队列】1505. 最多 K 次交换相邻数位后得到的最小整数

本文涉及知识点 树状数组 队列 LeetCode1505. 最多 K 次交换相邻数位后得到的最小整数 给你一个字符串 num 和一个整数 k 。其中&#xff0c;num 表示一个很大的整数&#xff0c;字符串中的每个字符依次对应整数上的各个 数位 。 你可以交换这个整数相邻数位的数字 最多 k 次…...

【附精彩文章合辑】当谈到程序的“通用性”与“过度设计”的困境时,我们可以通过一些具体的例子来更直观地阐述这些解决方案

当谈到程序的“通用性”与“过度设计”的困境时&#xff0c;我们可以通过一些具体的例子来更直观地阐述这些解决方案。以下是一些示例&#xff1a; 一、明确需求与目标 例子1&#xff1a;在线购物平台 需求分析&#xff1a;平台需要支持用户注册、登录、浏览商品、下单购买、…...

Word中删除空白页

① 文字后面出现的空白页 把鼠标放在空白页的位置&#xff0c;按住Ctrl Delete即可。 ② 表格后面的空白页 把鼠标放在空白页左侧&#xff0c;直到出现一个空白的箭头&#xff0c;点击一下选中空白页&#xff0c;然后再Ctrl D&#xff0c;打开字体选项卡&#xff0c;在效果中…...

30.Netty进阶-黏包半包解决方案-短链接

客户端发送一次完整的消息,然后就把与服务端的链接断开。服务端读到的结果就是-1。 服务器就知道 从链接建立到断开,发送的数据是一条完整的数据。 客户端代码 package com.xkj.nian;import io.netty.bootstrap.Bootstrap; import io.netty.buffer.ByteBuf; import io.net…...

斜堆(数据结构篇)

数据结构之斜堆 斜堆 概念&#xff1a; 斜堆是左式堆的自调节形式&#xff0c;斜堆和左式堆间的关系类似于伸展树和AVL树间的关系斜堆是具有堆序性的二叉树&#xff0c;但是不存在对树的结构限制不同于左式堆&#xff0c;关于任意节点的零路径长的任何信息都不保留&#xff…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...