计算机视觉全系列实战教程 (十二):图像分割(阈值分割threshold、分水岭算法watershed的使用步骤、洪水填充floodFill算法的使用)
1.图像分割概述
(1)What(什么是图像分割)
将图像划分为不同的子区域,使得同一子区域具有较高的相似性,不同的子区域具有明显的差异性
(2)Why(对图像进行分割有什么作用)
- 医学领域:将不同组织分割成不同区域帮助分析病情
- 军事领域:通过对图像的分割,为自动目标识别提供参数,为飞行器或武器的精准导航提供依据
- 遥感领域:通过遥感图像分析城市地貌、作物生长情况。此外,云系分析和天气预报都离不开图像分割
- 交通领域:车辆跟踪和车牌识别
- 工业领域:零部件分类、质量评估等
(3)Which(有哪些图像分割的方法)
- 基于阈值的分割方法:利用灰度直方图得到分割的阈值,利用这些阈值将图像分为几个部分,核心思想是认为同一部分的像素是同一个物体。
- 基于边缘的分割方法:检测图像的边界以实现对图像的分割
- 基于区域的分割方法:核心思想是将有相似特性的像素集合起来构成区域,将差异性较大的区域进行分裂
- 基于神经网络的分割方法:这里不多赘言,现在很火…
- 基于聚类的分割方法:依据像素相似度,使用聚类算法将像素划分为不同类别
2.基于阈值的分割
(1)固定阈值分割
将图像分为两个部分:黑和白两个区域
/*@author @还下着雨ZG
* @brief 固定阈值图像分割
* @param[in] imSrc, 待分割的图像
* @param[out] imSegment, 分割后的图像
* @param[in] threVal, 输入的阈值
* @return, 返回正整数表示图像分割成功,负整数表示失败
**/
int ImgSegmentByGlbThreVal(const cv::Mat& imSrc, cv::Mat& imSegment, int threVal)
{if(imSrc.empty()) return -1;if(threVal<0 || threVal>255) return -2;// 图像预处理cv::Mat imGray;if(imSrc.channels()==1) imGray = imSrc.clone();else if(imSrc.channels() == 3){cv::cvtColor(imSrc, imGray, cv::COLOR_RGB2GRAY);}else{return -3;}cv::GaussianBlur(imGray, imGray, cv::Size(3,3), 0);//全局阈值法cv::threshold(imGray, imSegment, threVal);return 1;
}
阈值分割函数threshold的介绍:
double cv::threshold(cv::Mat &imSrc, //输入图像,应该为单通道cv::Mat &imDst, //分割后的图像,大小和类型和imSrc相同double thresh, //表示阈值double maxval, //最大灰度值,一般设为255int type //阈值化类型,详细介绍如下所示};
参数type的介绍:type是一个枚举类型的数据
THRESH_BINARY = 0, // ( x > thresh ) ? 255 : 0
THRESH_BINARY_INV = 1, // ( x > thresh ) ? 0 : 255
THRESH_TRUNC = 2, // ( x > thresh ) ? thresh : x
THRESH_TOZERO = 3, // ( x < thresh ) ? 0 : x
THRESH_TOZERO = 4, // ( x < thresh ) ? x : 0
THRESH_MASK = 7,
THRESH_OTSU = 8, // 自动处理,图像自适应二值化,常用区间【0-255】
(2)自适应阈值分割
根据图像不同区域的亮度分布计算局部阈值,对于图像的不同区域能够自适应计算不同阈值
void cv::adaptiveThreshold(cv::Mat &imSrc, //输入的源图像cv::Mat &imDst, //输出图像double maxval, //预设满足条件的最大值int adaptMethod, //指定自适应阈值算法类型(ADAPTIVE_MEAN_C或ADAPTIVE_THRESH_GAUSSIAN_C两种)int threshType, //阈值类型(THRESH_BINARY或THRESH_BINARY_INV)int blockSize, //领域块的大小,用于计算区域阈值(3,5,7 ...)double C, //与算法有关的参数,是一个从均值或加权均值提取的常数,可为负);
使用adaptiveThresh:
/*@author @还下着雨ZG
* @brief 自适应阈值图像分割
* @param[in] imSrc, 待分割的图像
* @param[out] imSegment, 分割后的图像
* @return, 返回正整数表示图像分割成功,负整数表示失败
**/
int ImgSegmentByAdpThre(const cv::Mat& imSrc, cv::Mat& imSegment)
{if (imSrc.empty()) return -1;cv::Mat imGray;if (imSrc.channels() == 1){cv::copyTo(imSrc, imGray, cv::Mat());}else if (imSrc.channels() == 3){cv::cvtColor(imSrc, imGray, cv::COLOR_RGB2GRAY);}else{return -2;}cv::GaussianBlur(imGray, imGray, cv::Size(3, 3), 0);int blockSize = 3;int constValue = 0;cv::adaptiveThreshold(imGray, imSegment, 255, cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY, blockSize,constValue);return 1;
}
在实际使用时,大部分是先通过算子寻找边缘,然后和区域生长融合来分割图像
3.基于区域的分割
有相似特性的像素集合起来构成区域,将差异性较大的区域进行分裂
(1)分水岭算法
A.What(分水岭算法的概念)
将图像看作是测地学上的拓扑地貌,每一个像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域被称为盆地,对应得边界形成分水岭。
每一个局部极小值表面,刺穿一个小孔,然后从小孔浸水,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,两个盆地间形成分水岭。
opencv提供的分水岭算法原型如下:
void cv::watershed(cv::Mat &imBGR, //三通道8bit的彩色图像);
B.How(如何使用分水岭算法对图像进行分割)
- step01: 图像预处理(灰度化、滤波去噪等)
- step02: Canny边缘检测
- step03: 查找轮廓(findContours函数查找轮廓),并把轮廓信息按照不同编号绘制到watershed的第二次参数markers上,相当于标记注水点
- step04: watershed分水岭算法调用
- step05: 绘制分割出来的区域
/*@author @还下着雨ZG
* @param[in] imSrc, 输入的源图像
* @param[in] imMarks, 输出图像,分割之后的结果
* @return, 正整数表示成功,负整数表示失败
*/
int ImgDvdWatershed(const cv::Mat& imSrc, cv::Mat& imMarks)
{//step01 图像预处理:灰度+滤波cv::Mat imGray;cv::Mat imGray;if (imSrc.channels() == 1){cv::copyTo(imSrc, imGray, cv::Mat());}else if (imSrc.channels() == 3){cv::cvtColor(imSrc, imGray, cv::COLOR_RGB2GRAY);}else {return -1;}cv::GaussianBlur(imGray, imGray, cv::Size(3, 3), 2); //高斯滤波//Step02 Canny边缘检测cv::Mat imEdg(imGray.size(), CV_8UC1);cv::Canny(imGray, imEdg, 40, 110);//Step03 查找轮廓并绘制轮廓std::vector<std::vector<cv::Point>> vCnts;std::vector<cv::Vec4i> hierarchy;cv::findContours(imEdg, vCnts, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);cv::Mat imContours;if (!imMarks.empty()){imMarks.release();}imMarks = cv::Mat(imGray.size(), CV_32S, cv::Scalar::all(0));int iIdx = 0;int compCount = 0;for (; iIdx >= 0; iIdx = hierarchy[iIdx][0], compCount++){cv::drawContours(imMarks, vCnts, iIdx, cv::Scalar::all(compCount + 1), 1, 8, hierarchy);cv::drawContours(imContours, vCnts, iIdx, cv::Scalar(255), 1, 8, hierarchy);}cv::Mat imRGB;if (imSrc.channels() == 1){cv::cvtColor(imSrc, imRGB, cv::COLOR_GRAY2RGB);}else if (imSrc.channels() == 3){imRGB = imSrc.clone();}//Step04 调用分水岭算法cv::watershed(imRGB, imMarks);//marks既是输入参数又是输出参数imRGB.release();return 1;
}
说明:该函数输出参数imMarks图像,同一区域用相同的数值标识,分水岭用-1标识
(2)洪水填充法分割图像
该算法通常对边缘图像进行操作,可用于分割出比较完整的外轮廓
int cv::floodFill(cv::Mat &imSrc, //输入图像cv::Point seedPt, //填充的起始点cv::Scalar newVal, //填充的像素值cv::Rect *rect=0, //将要重绘区域的最小边界矩形区域cv::Scalar loDiff = cv::Scalar(), //像素值负差的最大值cv::Scalar upDiff = cv::Scalar(), //像素值正差的最大值int flags = 4 //操作标识符);
相关文章:
计算机视觉全系列实战教程 (十二):图像分割(阈值分割threshold、分水岭算法watershed的使用步骤、洪水填充floodFill算法的使用)
1.图像分割概述 (1)What(什么是图像分割) 将图像划分为不同的子区域,使得同一子区域具有较高的相似性,不同的子区域具有明显的差异性 (2)Why(对图像进行分割有什么作用) 医学领域:将不同组织分割成不同区域帮助分析病情军事领域ÿ…...
Linux的免交互
交互:我们发出指令控制程序的运行,程序在接收到指令之后按照指令的效果做出对应的反应。 免交互:间接的通过第三方的方式把指令传送给程序,不用直接的下达指令。 1、here document免交互 ere document免交互:是命令…...
查看es p12证书文件过期方法
查看证书过期时间: openssl pkcs12 -in elastic-certificates.p12 -nokeys -out elastic-certificates.crt (需要输入证书生成时配置密码) openssl x509 -enddate -noout -in elastic-certificates.crt...
1.8 无符号大数加、减运算
作者 李卫明 单位 杭州电子科技大学 1.8 无符号大数加、减运算。程序设计中经常遇到无符号大数加、减运算问题,请在样例程序Ex1.4基础上实现无符号大数减运算。题目要求输入两个无符号大数,保证一个大数不小于第二个大数,输出它们的和、差。…...
Java常用类--包装类
包装类 一方面出于性能方面的考虑,java为数值使用基本类型,而不是对象。基本类型不是对象层次的组成部分,它们不继承Object。 另一方面有时需要创建表示基本类型的对象,例如集合类只处理对象。为了在类中存储基本类型,…...
SpringMvcの拦截器全局异常处理
一、拦截器 我们在网上发贴子的时候如果没有登录,点击发送按钮会提示未进行登录,跳转到登录页面。这样的功能是如何实现的。 1、 拦截器的作用 Spring MVC 的处理器拦截器类似于Servlet开发中的过滤器Filter,用于对处理器进行预处理和后处理…...
JVM虚拟机的组成
一、为什么要学习 JVM ? 1. “ ⾯试造⽕箭,⼯作拧螺丝” , JVM 属于⾯试官特别喜欢提问的知识点; 2. 未来在⼯作场景中,也许你会遇到以下场景: 线上系统突然宕机,系统⽆法访问,甚⾄直…...
探索CSS clip-path: polygon():塑造元素的无限可能
在CSS的世界里,clip-path 属性赋予了开发者前所未有的能力,让他们能够以非传统的方式裁剪页面元素,创造出独特的视觉效果。其中,polygon() 函数尤其强大,它允许你使用多边形来定义裁剪区域的形状,从而实现各…...
【华为OD机试B卷】单词接龙(C++/Java/Python)
题目 题目描述 单词接龙的规则是: 可用于接龙的单词首字母必须要前一个单词的尾字母相同;当存在多个首字母相同的单词时,取长度最长的单词,如果长度也相等,则取字典序最小的单词;已经参与接龙的单词不能重复使用。现给定一组全部由小写字母组成单词数组,并指定其中的一个…...
项目实训-vue(十七)
项目实训-vue(十七) 文章目录 项目实训-vue(十七)1.概述2.问诊类型3.问诊时间统计4.看诊时间统计 1.概述 本篇博客将记录我在数据统计页面中的工作。因为项目并未实际运行,因此我们拟定了一些数据,并构建了…...
Android10 SystemUI系列 需求定制(二)隐藏状态栏通知图标,锁屏通知,可定制包名,渠道等
一、前言 SystemUI 所包含的界面和模块比较多,这一节主要分享一下状态栏通知图标和通知栏的定制需求:隐藏状态栏通知图标,锁屏通知,可定制包名,渠道等 来熟悉一下Systemui。 二、准备工作 按照惯例先找到核心类。这里提前说一下,这个需求的修改方法更多,笔者这里也只…...
Linux:RAID磁盘阵列
目录 一、RAID(磁盘阵列) 1.1、概念 1.2、RAID 0(条带化存储) 1.3、RAID 1(镜像存储) 1.4、RAID 5 1.5、RAID 6 1.6、RAID 10 (先做镜像,再做条带) 二、创建RAID 2.1、建立RAID 0 …...
MongoDB和AI 赋能行业应用:零售
欢迎阅读“MongoDB 和 AI 赋能行业应用”系列的第三篇。 本系列重点介绍 AI 应用于不同行业的关键用例,涵盖制造业和汽车行业、金融服务、零售、电信和媒体、保险以及医疗保健行业。 利用生成式 AI 技术(Gen AI),零售商可以创造…...
MQ~消息队列能力、AMQP协议、现有选择(Kafka、RabbitMQ、RocketMQ 、Pulsar)
消息队列 消息队列看作是一个存放消息的容器,当我们需要使用消息的时候,直接从容器中取出消息供自己使用即可。由于队列 Queue 是一种先进先出的数据结构,所以消费消息时也是按照顺序来消费的。 常⽤的消息队列主要这 五 种,分别…...
开源网安参与编制的《代码大模型安全风险防范能力要求及评估方法》正式发布
代码大模型在代码生成、代码翻译、代码补全、错误定位与修复、自动化测试等方面为研发人员带来了极大便利的同时,也带来了对安全风险防范能力的挑战。基于此,中国信通院依托中国人工智能产业发展联盟(AIIA),联合开源…...
【树状数组 队列】1505. 最多 K 次交换相邻数位后得到的最小整数
本文涉及知识点 树状数组 队列 LeetCode1505. 最多 K 次交换相邻数位后得到的最小整数 给你一个字符串 num 和一个整数 k 。其中,num 表示一个很大的整数,字符串中的每个字符依次对应整数上的各个 数位 。 你可以交换这个整数相邻数位的数字 最多 k 次…...
【附精彩文章合辑】当谈到程序的“通用性”与“过度设计”的困境时,我们可以通过一些具体的例子来更直观地阐述这些解决方案
当谈到程序的“通用性”与“过度设计”的困境时,我们可以通过一些具体的例子来更直观地阐述这些解决方案。以下是一些示例: 一、明确需求与目标 例子1:在线购物平台 需求分析:平台需要支持用户注册、登录、浏览商品、下单购买、…...
Word中删除空白页
① 文字后面出现的空白页 把鼠标放在空白页的位置,按住Ctrl Delete即可。 ② 表格后面的空白页 把鼠标放在空白页左侧,直到出现一个空白的箭头,点击一下选中空白页,然后再Ctrl D,打开字体选项卡,在效果中…...
30.Netty进阶-黏包半包解决方案-短链接
客户端发送一次完整的消息,然后就把与服务端的链接断开。服务端读到的结果就是-1。 服务器就知道 从链接建立到断开,发送的数据是一条完整的数据。 客户端代码 package com.xkj.nian;import io.netty.bootstrap.Bootstrap; import io.netty.buffer.ByteBuf; import io.net…...
斜堆(数据结构篇)
数据结构之斜堆 斜堆 概念: 斜堆是左式堆的自调节形式,斜堆和左式堆间的关系类似于伸展树和AVL树间的关系斜堆是具有堆序性的二叉树,但是不存在对树的结构限制不同于左式堆,关于任意节点的零路径长的任何信息都不保留ÿ…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
