Python polars学习-07 缺失值
背景
polars学习系列文章,第7篇 缺失值
该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习
仓库地址:https://github.com/DataShare-duo/polars_learn
小编运行环境
import sysprint('python 版本:',sys.version.split('|')[0])
#python 版本: 3.11.9import polars as plprint("polars 版本:",pl.__version__)
#polars 版本: 0.20.22
polars 中缺失值的定义
在 polars 中缺失值用 null 来表示,只有这1种表示方式,这个与 pandas 不同,在 pandas 中 NaN(NotaNumber)也代表是缺失值,但在polars中把 NaN 归属为一种浮点数据
df = pl.DataFrame({"value": [1,2,3, None,5,6,None,8,9],},
)
print(df)
#shape: (9, 1)
┌───────┐
│ value │
│ --- │
│ i64 │
╞═══════╡
│ 1 │
│ 2 │
│ 3 │
│ null │
│ 5 │
│ 6 │
│ null │
│ 8 │
│ 9 │
└───────┘
polars中缺失值包括的2种元信息
- 缺失值数量,可以通过
null_count方法来快速获取,因为已经是计算好的,所以调用该方法会立即返回结果 - 有效位图(validity bitmap),代表是否是缺失值,在内存中用 0 或 1 进行编码来表示,所占的内存空间非常小,通常占用空间为(数据框长度 / 8) bytes,通过
is_null方法来查看数据是否是缺失值
null_count_df = df.null_count()
print(null_count_df)
#shape: (1, 1)
┌───────┐
│ value │
│ --- │
│ u32 │
╞═══════╡
│ 2 │
└───────┘is_null_series = df.select(pl.col("value").is_null(),
)
print(is_null_series)
#shape: (9, 1)
┌───────┐
│ value │
│ --- │
│ bool │
╞═══════╡
│ false │
│ false │
│ false │
│ true │
│ false │
│ false │
│ true │
│ false │
│ false │
└───────┘
缺失值填充
缺失值填充主要通过 fill_null方法来处理,但是需求指定填充缺失值的方法
- 常量,比如用 0 来填充
- 填充策略,例如:向前、向后 等
- 通过表达式,比如利用其他列来填充
- 插值法
df = pl.DataFrame({"col1": [1, 2, 3],"col2": [1, None, 3],},
)
print(df)
#shape: (3, 2)
┌──────┬──────┐
│ col1 ┆ col2 │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞══════╪══════╡
│ 1 ┆ 1 │
│ 2 ┆ null │
│ 3 ┆ 3 │
└──────┴──────┘
常量填充
fill_literal_df = df.with_columns(fill=pl.col("col2").fill_null(pl.lit(2)),
)
print(fill_literal_df)
#shape: (3, 3)
┌──────┬──────┬──────┐
│ col1 ┆ col2 ┆ fill │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 │
╞══════╪══════╪══════╡
│ 1 ┆ 1 ┆ 1 │
│ 2 ┆ null ┆ 2 │
│ 3 ┆ 3 ┆ 3 │
└──────┴──────┴──────┘
填充策略
填充策略:{‘forward’, ‘backward’, ‘min’, ‘max’, ‘mean’, ‘zero’, ‘one’}
fill_df = df.with_columns(forward=pl.col("col2").fill_null(strategy="forward"),backward=pl.col("col2").fill_null(strategy="backward"),
)
print(fill_df)
#shape: (3, 4)
┌──────┬──────┬─────────┬──────────┐
│ col1 ┆ col2 ┆ forward ┆ backward │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 ┆ i64 │
╞══════╪══════╪═════════╪══════════╡
│ 1 ┆ 1 ┆ 1 ┆ 1 │
│ 2 ┆ null ┆ 1 ┆ 3 │
│ 3 ┆ 3 ┆ 3 ┆ 3 │
└──────┴──────┴─────────┴──────────┘
通过表达式
fill_median_df = df.with_columns(fill=pl.col("col2").fill_null(pl.median("col2")), #类型会转换为浮点型
)
print(fill_median_df)
#shape: (3, 3)
┌──────┬──────┬──────┐
│ col1 ┆ col2 ┆ fill │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ f64 │
╞══════╪══════╪══════╡
│ 1 ┆ 1 ┆ 1.0 │
│ 2 ┆ null ┆ 2.0 │
│ 3 ┆ 3 ┆ 3.0 │
└──────┴──────┴──────┘
通过插值法
fill_interpolation_df = df.with_columns(fill=pl.col("col2").interpolate(),
)
print(fill_interpolation_df)
#shape: (3, 3)
┌──────┬──────┬──────┐
│ col1 ┆ col2 ┆ fill │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ f64 │
╞══════╪══════╪══════╡
│ 1 ┆ 1 ┆ 1.0 │
│ 2 ┆ null ┆ 2.0 │
│ 3 ┆ 3 ┆ 3.0 │
└──────┴──────┴──────┘
历史相关文章
- Python polars学习-01 读取与写入文件
- Python polars学习-02 上下文与表达式
- polars学习-03 数据类型转换
- Python polars学习-04 字符串数据处理
- Python polars学习-05 包含的数据结构
- Python polars学习-06 Lazy / Eager API
以上是自己实践中遇到的一些问题,分享出来供大家参考学习,欢迎关注微信公众号:DataShare ,不定期分享干货
相关文章:
Python polars学习-07 缺失值
背景 polars学习系列文章,第7篇 缺失值 该系列文章会分享到github,大家可以去下载jupyter文件,进行参考学习 仓库地址:https://github.com/DataShare-duo/polars_learn 小编运行环境 import sysprint(python 版本:…...
前端面试题(八)答案版
面试形式:线下面试:一面:30分钟二面:30分钟 特殊要求:内网开发自研UI组件库(无文档介绍)学习能力要求高 面试评价:题目灵活应用性较强 面试官:项目负责人前端负责人 …...
在交易中出场比入场更为重要
出场策略和交易退出机制比交易者入场的方式更为关键,它们对整体回报和结果的持续性有着更大的影响。 即使交易者入场时的条件并非最佳,良好的出场策略也能扭转局势。反之,即使交易者以近乎完美的条件入场,若出场策略管理不当&…...
【D3.js in Action 3 精译】关于本书
文章目录 本书读者本书结构与路线图本书代码liveBook 在线论坛 D3.js 项目的传统开发步骤 本书读者 这本书适用于所有渴望在数据可视化工作中获得完全创意自由的人,从定制化的经典图表到创建独特的数据可视化布局,涵盖内容广泛,应有尽有。您…...
【408考点之数据结构】二叉树的概念与实现
二叉树的概念与实现 一、二叉树的概念 二叉树是一种特殊的树结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。二叉树广泛应用于许多计算机科学领域,如表达式解析、排序、搜索算法等。 二、二叉树的性质 性质1:…...
STM32之二:时钟树
目录 1. 时钟 2. STM3时钟源(哪些可以作为时钟信号) 2.1 HSE时钟 2.1.1 高速外部时钟信号(HSE)来源 2.1.2 HSE外部晶体电路配置 2.2 HSI时钟 2.3 PLL时钟 2.4 LSE时钟 2.5 LSI时钟 3. STM32时钟(哪些系统使用时…...
第十四站:Java玫瑰金——移动开发(第二篇)
处理不同类型的网络连接和增强错误处理及用户反馈,需要我们对网络状态检查逻辑进行扩展,并在UI上给予用户适当的提示。以下是对Java代码的进一步扩充: 网络状态检查扩展:区分Wi-Fi和移动数据,并根据网络类型提供不同的…...
数据处理技术影响皮质-皮质间诱发电位的量化
摘要 皮质-皮质间诱发电位(CCEPs)是探究颅内人体电生理学中有效连接性的常用工具。与所有人体电生理学数据一样,CCEP数据极易受到噪声的影响。为了解决噪声问题,通常会对CCEP数据进行滤波和重参考,但不同的研究会采用不同的处理策略。本研究…...
ResultSet的作用和类型
ResultSet的作用: ResultSet在Java中主要用于处理和操作数据库查询结果。它是一个接口,提供了一系列方法来访问和操作数据库查询得到的结果集。具体来说,ResultSet的作用包括: 获取查询结果:通过ResultSet可以获取数…...
计算机网络:运输层 - TCP首部格式 连接的创建与释放
计算机网络:运输层 - TCP首部格式 & 连接的创建与释放 TCP首部格式源端口 目的端口序号确认号数据偏移保留控制位窗口检验和紧急指针 TCP连接创建 - 三次握手TCP传输过程TCP连接释放 - 四次挥手 TCP首部格式 TCP的首部如下: 首部的前20 byte是固定的…...
妈耶!被夸爆的零售数据分析方案在这里
在竞争激烈的零售市场中,数据分析已成为企业决胜的关键。今天,就为大家揭秘一份备受赞誉的零售数据分析方案——奥威BI零售数据分析方案,它围绕“人、货、场、供、财”五大主题,助力企业精准决策,实现业务增长。 一、人…...
AI探索:最佳落地应用场景
如果说今年的风口,那一定是 AI。不过AI像一把双刃剑,既有助益也有风险。我们将从IBM Watson的高飞与坠落,到Google Allo的黯然失色,探索AI应用中的教训。同时,瑞幸咖啡的成功故事展现了凭借策略得当的AI应用࿰…...
2024年最新机动车签字授权人考试题库。
31."简易瞬态工况法"所使用的五气分析仪的温度范图:分析系统及相关部件应在( )。 A.0-40℃ B.0-50℃ C.0-60℃ D.-10-40℃ 答案:A 32.稀释氧传感器环境空气量程检测时的读数值位于( )%vol范围之外时,应…...
软RAID
硬盘 连续空间 无法 扩容 lvm 非连续空间 可以动态扩容 raid 备份, 提高读写性能,不能扩容 raid 是磁盘的集合,按照排列组合的方法不 一,给 raid 去了不同的名字 raid0 raid1 raid5 raid10 什么是 RAID "RAID"…...
IDEA 学习之 启动“卡死”
目录 1. 断点问题2. IDEA 版本问题 1. 断点问题 部分断点涉及应用启动,会导致启动“卡死” 2. IDEA 版本问题 部分 IDEA 版本存在启动问题,本人之前遇到过(别人启动三分钟,我启动半个小时)。更换别的版本ÿ…...
豆瓣高分项目管理书籍推荐
📬豆瓣网站上有很多项目管理领域的书籍获得了较高的评分,以下是一些高分项目管理书籍的精选列表,发出来跟大家分享一下: 《项目管理知识体系指南(PMBOK指南)》 【内容简介】这本书是美国项目管理协会&…...
关于docker存储overlay2相关问题
报错如下: 报错原因:使用rm -rf 清理overlay2导致的,非正常清理。 正常清理命令如下: # 清理Docker的所有构建缓存 docker builder prune# 删除旧于24小时的所有构建缓存 docker builder prune --filter "until24h"#删…...
实现批量自动化电商数据采集|商品详情页面|店铺商品信息|订单详情数据
电商数据采集是指通过技术手段获取电商平台上的商品信息、店铺信息和订单信息等数据。这些数据可以用于市场分析、竞品分析、用户行为分析等。 商品详情页面是指电商平台上展示商品详细信息的页面,包括商品名称、价格、图片、描述、评价等信息。通过采集商品详情页…...
ES6(ECMAScript 6.0) 新特性
1 ES6 基本介绍 (1)ECMAScript 6.0(简称 ES6)是 JavaScript 语言的下一代标准, 2015 年 6 月发布。 (2)ES6 设计目标:达到 JavaScript 语言可以用来编写复杂的大型程序,成为企业级开发语言 &…...
性能工具之 JMeter 常用组件介绍(八)
文章目录 一、Jmeter命令行启动二、Jmeter脚本录制 本文主要介绍JMeter命令行启动和脚本录制功能 一、Jmeter命令行启动 Jmeter有两种运行: 一种是采用的界面模式(GUI)启动,会占用不少系统资源;另一种是命令行模式(n…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
