当前位置: 首页 > news >正文

malloc、free和new delete的区别

malloc/freenew/delete 是在 C++ 中分配和释放内存的两种不同方法。它们主要有以下区别:

1. 语法和用法

  • mallocfree: malloc开辟空间时需要手动计算分配的空间大小

    int* p = (int*)malloc(sizeof(int) * 10); // 分配10个int类型的内存
    // 使用内存
    free(p); // 释放内存
    

    实际malloc在分配空间的时候会多给我们分配16个字节的空间(存储了内存块的描述信息),即16+mem。然后返回mem的首地址。然后free的时候,会以mem的地址左偏移16位,这样就知道能够释放多大的空间了。

  • newdelete: new开辟空间不需要手动计算分配的大小

    int* p = new int[10]; // 分配10个int类型的内存
    // 使用内存
    delete[] p; // 释放内存
    

2. 类型安全

  • mallocfree: malloc 返回 void*,需要显式转换为所需的类型指针,不提供类型安全。
  • newdelete: new 直接返回所需类型的指针,不需要类型转换,提供类型安全。

3. 构造函数和析构函数

  • mallocfree: 只分配和释放原始内存,不调用构造函数和析构函数。适用于 C 语言风格的内存管理。
  • newdelete: new 在分配内存后调用构造函数,delete 在释放内存前调用析构函数,适用于需要对象初始化和清理的场景。

4. 内存分配失败处理

  • malloc: 内存分配失败时返回 NULL,需要显式检查。
  • new: 内存分配失败时抛出 std::bad_alloc 异常。

5. 自定义操作符

  • newdelete: 可以重载自定义的 newdelete 操作符来实现特定的内存分配行为。

6. 适用范围

  • mallocfree: 主要用于 C 语言,也可以在 C++ 中使用,但不推荐用于需要对象初始化的场景。
  • newdelete: 专为 C++ 设计,推荐用于分配和释放 C++ 对象。

7. 内存分配地址

  • malloc:是在堆上分配的,如果分配的内存小于128k一般是在内存池中取用。如果大于128k则通常会使用 mmap 系统调用直接从操作系统请求内存。mmap 会映射一个匿名内存区域到进程的地址空间,并返回该区域的地址。这种方法的优点是大块内存可以独立管理和释放,不会影响到常规的内存池。

  • new: 是在free sotre上分配内存

    • 调用 operator new 分配内存:operator new 是一个内置的或用户自定义的函数,用于从自由存储区分配足够的内存。
      标准库提供了默认实现的 operator new,通常会调用底层的内存分配函数(如 malloc)来分配内存。
      operator new 可能会抛出 std::bad_alloc 异常,如果内存分配失败。
      调用对象的构造函数:

    • 在成功分配内存后,new 运算符会在分配的内存地址上调用对象的构造函数。
      这一步骤确保对象被正确地初始化。
      返回对象的指针:

    • 构造函数调用完成后,new 运算符返回指向新分配和构造的对象的指针。

示例对比

mallocfree 示例
#include <cstdlib> // 包含 malloc 和 free 的头文件
#include <iostream>struct MyStruct {int x;MyStruct() : x(10) {} // 自定义构造函数
};int main() {MyStruct* p = (MyStruct*)malloc(sizeof(MyStruct)); // 只分配内存,不调用构造函数if (p == nullptr) {std::cerr << "Memory allocation failed\n";return 1;}p->x = 20; // 需要手动初始化std::cout << "MyStruct.x = " << p->x << std::endl;free(p); // 只释放内存,不调用析构函数return 0;
}
newdelete 示例
#include <iostream>struct MyStruct {int x;MyStruct() : x(10) {} // 自定义构造函数~MyStruct() { std::cout << "Destructor called\n"; } // 自定义析构函数
};int main() {MyStruct* p = new MyStruct; // 分配内存并调用构造函数std::cout << "MyStruct.x = " << p->x << std::endl;delete p; // 调用析构函数并释放内存return 0;
}

总结来说,malloc/free 主要用于 C 风格的内存管理,而 new/delete 适用于 C++,因为它们不仅分配和释放内存,还能处理对象的构造和析构。

相关文章:

malloc、free和new delete的区别

malloc/free 和 new/delete 是在 C 中分配和释放内存的两种不同方法。它们主要有以下区别&#xff1a; 1. 语法和用法 malloc 和 free: malloc开辟空间时需要手动计算分配的空间大小 int* p (int*)malloc(sizeof(int) * 10); // 分配10个int类型的内存 // 使用内存 free(p); …...

如何有效地优化 Erlang 程序的内存使用,以应对大规模数据处理的需求?

要有效地优化Erlang程序的内存使用&#xff0c;以应对大规模数据处理的需求&#xff0c;可以考虑以下几个方面&#xff1a; 减少不必要的内存分配&#xff1a;避免过多的数据复制和不必要的数据结构创建。可以使用Erlang的二进制数据类型来避免数据复制&#xff0c;使用原子数据…...

vue3项目使用@antv/g6实现可视化流程功能

文章目录 项目需求一、需要解决的问题二、初步使用1.动态数据-组件封装(解决拖拽会留下痕迹的问题&#xff0c;引用图片&#xff0c;在节点右上角渲染图标&#xff0c;实现&#xff0c;事现旋转动画&#xff0c;达到loading效果)2.文本太长&#xff0c;超出部分显示(...),如下函…...

【Linux网络(一)初识计算机网络】

一、网络发展 1.发展背景 2.发展类型 二、网络协议 1.认识协议 2.协议分层 3.OSI七层模型 4.TCP/IP协议 三、网络传输 1.协议报头 2.局域网内的两台主机通信 3.跨网络的两台主机通信 四、网络地址 1.IP地址 2.MAC地址 一、网络发展 1.发展背景 计算机网络的发展…...

Vulhub——Log4j、solr

文章目录 一、Log4j1.1 Apache Log4j2 lookup JNDI 注入漏洞&#xff08;CVE-2021-44228&#xff09;1.2 Apache Log4j Server 反序列化命令执行漏洞&#xff08;CVE-2017-5645&#xff09; 二、Solr2.1 Apache Solr 远程命令执行漏洞&#xff08;CVE-2017-12629&#xff09;2.…...

linux 设置程序自启动

程序随系统开机自启动的方法有很多种&#xff0c; 这里介绍一种简单且常用的&#xff0c; 通过系统的systemd服务进行自启动。 第一步&#xff1a; 新建一个.service文件 sudo vim /etc/systemd/system/myservice.service[Unit] DescriptionMy Service #Afternetwork.target[…...

PostgreSQL 分区表与并行查询(十)

1. 分区表概述 1.1 什么是分区表 分区表是将大表分割成更小、更可管理的部分的技术。每个分区表都可以单独进行索引和查询&#xff0c;从而提高查询性能和管理效率。 1.2 分区策略 1.2.1 基于范围的分区 按照时间范围或者数值范围进行分区&#xff0c;如按月或按地区。 C…...

React Hooks使用规则:为什么不在条件语句和循环中使用它们

React Hooks为函数组件引入了状态和生命周期特性&#xff0c;极大地增强了其功能。然而&#xff0c;正确使用Hooks是确保组件稳定性和性能的关键。本文将探讨React Hooks的基本规则&#xff0c;以及为什么我们不应该在条件语句和循环中使用它们。 Hooks的基本规则 React团队为…...

【Docker】Consul 和API

目录 一、Consul 1. 拉取镜像 2. 启动第一个consul服务&#xff1a;consul1 3. 查看consul service1 的ip地址 4. 启动第二个consul服务&#xff1a;consul2&#xff0c; 并加入consul1&#xff08;使用join命令&#xff09; 5. 启动第三个consul服务&#xff1a;consul3&…...

Python polars学习-07 缺失值

背景 polars学习系列文章&#xff0c;第7篇 缺失值 该系列文章会分享到github&#xff0c;大家可以去下载jupyter文件&#xff0c;进行参考学习 仓库地址&#xff1a;https://github.com/DataShare-duo/polars_learn 小编运行环境 import sysprint(python 版本&#xff1a;…...

前端面试题(八)答案版

面试形式&#xff1a;线下面试&#xff1a;一面&#xff1a;30分钟二面&#xff1a;30分钟 特殊要求&#xff1a;内网开发自研UI组件库&#xff08;无文档介绍&#xff09;学习能力要求高 面试评价&#xff1a;题目灵活应用性较强 面试官&#xff1a;项目负责人前端负责人 …...

在交易中出场比入场更为重要

出场策略和交易退出机制比交易者入场的方式更为关键&#xff0c;它们对整体回报和结果的持续性有着更大的影响。 即使交易者入场时的条件并非最佳&#xff0c;良好的出场策略也能扭转局势。反之&#xff0c;即使交易者以近乎完美的条件入场&#xff0c;若出场策略管理不当&…...

【D3.js in Action 3 精译】关于本书

文章目录 本书读者本书结构与路线图本书代码liveBook 在线论坛 D3.js 项目的传统开发步骤 本书读者 这本书适用于所有渴望在数据可视化工作中获得完全创意自由的人&#xff0c;从定制化的经典图表到创建独特的数据可视化布局&#xff0c;涵盖内容广泛&#xff0c;应有尽有。您…...

【408考点之数据结构】二叉树的概念与实现

二叉树的概念与实现 一、二叉树的概念 二叉树是一种特殊的树结构&#xff0c;其中每个节点最多有两个子节点&#xff0c;分别称为左子节点和右子节点。二叉树广泛应用于许多计算机科学领域&#xff0c;如表达式解析、排序、搜索算法等。 二、二叉树的性质 性质1&#xff1a…...

STM32之二:时钟树

目录 1. 时钟 2. STM3时钟源&#xff08;哪些可以作为时钟信号&#xff09; 2.1 HSE时钟 2.1.1 高速外部时钟信号&#xff08;HSE&#xff09;来源 2.1.2 HSE外部晶体电路配置 2.2 HSI时钟 2.3 PLL时钟 2.4 LSE时钟 2.5 LSI时钟 3. STM32时钟&#xff08;哪些系统使用时…...

第十四站:Java玫瑰金——移动开发(第二篇)

处理不同类型的网络连接和增强错误处理及用户反馈&#xff0c;需要我们对网络状态检查逻辑进行扩展&#xff0c;并在UI上给予用户适当的提示。以下是对Java代码的进一步扩充&#xff1a; 网络状态检查扩展&#xff1a;区分Wi-Fi和移动数据&#xff0c;并根据网络类型提供不同的…...

数据处理技术影响皮质-皮质间诱发电位的量化

摘要 皮质-皮质间诱发电位(CCEPs)是探究颅内人体电生理学中有效连接性的常用工具。与所有人体电生理学数据一样&#xff0c;CCEP数据极易受到噪声的影响。为了解决噪声问题&#xff0c;通常会对CCEP数据进行滤波和重参考&#xff0c;但不同的研究会采用不同的处理策略。本研究…...

ResultSet的作用和类型

ResultSet的作用&#xff1a; ResultSet在Java中主要用于处理和操作数据库查询结果。它是一个接口&#xff0c;提供了一系列方法来访问和操作数据库查询得到的结果集。具体来说&#xff0c;ResultSet的作用包括&#xff1a; 获取查询结果&#xff1a;通过ResultSet可以获取数…...

计算机网络:运输层 - TCP首部格式 连接的创建与释放

计算机网络&#xff1a;运输层 - TCP首部格式 & 连接的创建与释放 TCP首部格式源端口 目的端口序号确认号数据偏移保留控制位窗口检验和紧急指针 TCP连接创建 - 三次握手TCP传输过程TCP连接释放 - 四次挥手 TCP首部格式 TCP的首部如下&#xff1a; 首部的前20 byte是固定的…...

妈耶!被夸爆的零售数据分析方案在这里

在竞争激烈的零售市场中&#xff0c;数据分析已成为企业决胜的关键。今天&#xff0c;就为大家揭秘一份备受赞誉的零售数据分析方案——奥威BI零售数据分析方案&#xff0c;它围绕“人、货、场、供、财”五大主题&#xff0c;助力企业精准决策&#xff0c;实现业务增长。 一、人…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

CMS内容管理系统的设计与实现:多站点模式的实现

在一套内容管理系统中&#xff0c;其实有很多站点&#xff0c;比如企业门户网站&#xff0c;产品手册&#xff0c;知识帮助手册等&#xff0c;因此会需要多个站点&#xff0c;甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...

NineData数据库DevOps功能全面支持百度智能云向量数据库 VectorDB,助力企业 AI 应用高效落地

NineData 的数据库 DevOps 解决方案已完成对百度智能云向量数据库 VectorDB 的全链路适配&#xff0c;成为国内首批提供 VectorDB 原生操作能力的服务商。此次合作聚焦 AI 开发核心场景&#xff0c;通过标准化 SQL 工作台与细粒度权限管控两大能力&#xff0c;助力企业安全高效…...

多模态学习路线(2)——DL基础系列

目录 前言 一、归一化 1. Layer Normalization (LN) 2. Batch Normalization (BN) 3. Instance Normalization (IN) 4. Group Normalization (GN) 5. Root Mean Square Normalization&#xff08;RMSNorm&#xff09; 二、激活函数 1. Sigmoid激活函数&#xff08;二分类&…...