40python数据分析numpy基础之diag处理矩阵对角线元素
1 python数据分析numpy基础之diag处理矩阵对角线元素
python的numpy库的diag(v,k=0)函数,以一维数组的形式返回方阵的对角线元素,或将一维数组转换为方阵(非对角线元素为0)。
方阵:方形矩阵,行数和列数相等的矩阵。如果一个矩阵有n行和n列,则称为方阵。
矩阵:矩形阵列,由相同类型元素按矩形网格排列组成的二维结构。矩阵有2个维度,行和列,m×n的矩阵有m行n列。
主对角线:从矩阵的左上角到右下角的对角线,它的元素具有相同的行索引和列索引。
次对角线:从矩阵的右上角到左下角的对角线,它的元素的行索引+列索引=矩阵大小-1,a_ij,i+j=n-1,n为矩阵的行数或列数。
用法
numpy.diag(v, k=0)
描述
numpy.diag(v,k=0),是一个用于创建和处理对角线数组的函数,提取矩阵对角线元素构造一维数组,或根据一维数组构造方阵。
入参
v:必选,列表、元组、数组,表示要处理的数组;
k:可选,默认为0,表示对角线位置;
1.1 入参v
numpy.diag(v,k=0)的入参v为必选入参;
如果v是二维数组,返回k位置的对角线;
如果v是一维数组,返回一个v作为k位置对角线的方阵,非对角线元素为0;
>>> import numpy as np
# diag(v)创建和处理对角线元素的函数
# v为列表
>>> np.diag([[1,2,3],[4,5,6],[7,8,9]])
array([1, 5, 9])
# v为元组
>>> np.diag(((1,2,3),(4,5,6),(7,8,9)))
array([1, 5, 9])
# v为二维数组,提取矩阵对角线元素构造一维数组
>>> ar1=np.arange(1,10).reshape(3,3)
>>> ar1
array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
>>> np.diag(ar1)
array([1, 5, 9])
>>> np.arange(3)
array([0, 1, 2])
# v为一维数组,将一维数组作为主对角线,构造方阵
# 方阵的非对角线元素为0,行和列相等
>>> np.diag(np.arange(3))
array([[0, 0, 0],[0, 1, 0],[0, 0, 2]])
1.2 入参k
numpy.diag(v,k=0)的入参k为可选入参;
默认为0,返回主对角线;
小于0,返回主对角线左下方的对角线;
大于0,返回主对角线右上方的对角线;
>>> import numpy as np
# diag(v,k=0)创建和处理对角线元素的函数
>>> ar1=np.arange(1,26).reshape(5,5)
>>> ar1
array([[ 1, 2, 3, 4, 5],[ 6, 7, 8, 9, 10],[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25]])
# v为二维数组,k=0返回主对角线的元素构造一维数组
>>> np.diag(ar1,k=0)
array([ 1, 7, 13, 19, 25])
# v为二维数组,k<0返回主对角线左下方的元素构造一维数组
>>> np.diag(ar1,k=-1)
array([ 6, 12, 18, 24])
# v为二维数组,k>0返回主对角线右上方的元素构造一维数组
>>> np.diag(ar1,k=1)
array([ 2, 8, 14, 20])
>>> np.arange(3)
array([0, 1, 2])
# v为一维数组,k=0将一维数组作为主对角线构造方阵,非对角线元素为0
>>> np.diag(np.arange(3),k=0)
array([[0, 0, 0],[0, 1, 0],[0, 0, 2]])
# v为一维数组,k=-1将一维数组作为主对角线的左下方的对角线构造方阵,非对角线元素为0
>>> np.diag(np.arange(3),k=-1)
array([[0, 0, 0, 0],[0, 0, 0, 0],[0, 1, 0, 0],[0, 0, 2, 0]])
# v为一维数组,k=1将一维数组作为主对角线的右上方的对角线构造方阵,非对角线元素为0
>>> np.diag(np.arange(3),k=1)
array([[0, 0, 0, 0],[0, 0, 1, 0],[0, 0, 0, 2],[0, 0, 0, 0]])
相关文章:
40python数据分析numpy基础之diag处理矩阵对角线元素
1 python数据分析numpy基础之diag处理矩阵对角线元素 python的numpy库的diag(v,k0)函数,以一维数组的形式返回方阵的对角线元素,或将一维数组转换为方阵(非对角线元素为0)。 方阵:方形矩阵,行数和列数相等…...
ffmpeg+nginx+video实现rtsp流转hls流,web页面播放
项目场景: 最近调试海康摄像头需要将rtsp流在html页面播放,因为不想去折腾推拉流,所以我选择ffmpeg转hls流,nginx转发,html直接访问就好了 1.首先要下载nginx和ffmpeg 附上下载地址: nginx nginx news ffmpeg htt…...
1、Redis系列-Redis高性能原理详解
Redis高性能原理详解 Redis是一款高性能的内存数据库,广泛应用于需要快速读写访问的数据密集型应用中。它的高性能得益于多方面的设计和优化。以下是Redis高性能实现的详细解释: 1. 单线程架构 Redis采用单线程架构来处理客户端请求,这与传…...
18.枚举
学习知识:枚举类型、相关的使用方法 Main.java: public class Main {public static void main(String[] args) {myenum[] colorlist myenum.values();//获取枚举中所有对象的引用数组for (myenum one : colorlist){System.out.println(one.toString(…...
全省高等职业学校大数据技术专业建设暨专业质量监测研讨活动顺利开展
6月21日,省教育评估院在四川邮电职业技术学院组织开展全省高等职业学校大数据技术专业建设暨专业质量监测研讨活动。省教育评估院副院长赖长春,四川邮电职业技术学院党委副书记、校长冯远洪,四川邮电职业技术学院党委委员、副校长程德杰等出席…...
2-16 基于matlab的动载荷简支梁模态分析程序
基于matlab的动载荷简支梁模态分析程序,可调节简支梁参数,包括截面宽、截面高、梁长度、截面惯性矩、弹性模量、密度。输出前四阶固有频率,任意时刻、位置的响应结果。程序已调通,可直接运行。 2-16 matlab 动载荷简支梁模态分析 …...
AI大模型的核心
前言 没错,AI大模型的核心成功因素通常可以归结为三大要素:大数据、大算力和强算法。这三个因素相辅相成,共同推动了现代人工智能技术的发展。 1. 大数据 • 定义:指的是涵盖广泛领域的海量数据,包括文本、图像、音…...
【Android面试八股文】ViewHolder为什么要被声明成静态内部类?
文章目录 ViewHolder为什么要被声明成静态内部类?1. 避免隐式引用导致的内存泄漏2. 提高性能3. 代码可读性和维护性实例代码总结ViewHolder为什么要被声明成静态内部类? 将 ViewHolder 声明为静态内部类有几个重要的原因,这样做可以提高性能并避免潜在的内存泄漏。下面是详…...
Android 11 系统OTA升级到旧版本(去除升级时间戳校验)
简介 由于客户要求能够通过OTA升级到旧版本因此探寻反向升级的方法。 方法一:进入recover模式 adb reboot recovery 点击Apply update from SD card 然后选择以前的OTA升级包就可以了。这种方式实测可以升级到旧的版本。但是我们的客户是通过在线升级软件进行更新…...
更新表的统计信息并清空缓存--DM8达梦数据库
更新表的统计信息并清空缓存--DM8达梦数据库 环境介绍1 收集 <表> 上所有对象信息,含索引2 清理缓存的执行计划3 达梦数据库学习使用列表 环境介绍 在某些环境刚完成数据迁移, 10万行以上大表数据量有修改1/3 ,查询条件已经创建索引,执行计划不好,或执行计划…...
【前后端实现】AHP权重计算
AHP权重计算: 需求:前端记录矩阵维度、上三角值,后端构建比较矩阵、计算权重值并将结果返回给前端 比较矩阵构建 如果你想要根据上三角(不包括对角线)的值来构建对称矩阵,那么你可以稍作修改上述的generate…...
K8S日常运维手册
Kubernetes(简称 K8S)是一种广泛使用的容器编排平台,能够自动化部署、扩展和管理容器化应用。对于运维人员来说,掌握 Kubernetes 的日常运维技能是确保系统稳定运行的关键。本文将介绍一些 Kubernetes 日常运维的基本操作与技巧&a…...
现在的Java面试都这么扯淡了吗?
在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「java的资料从专业入门到高级教程」, 点个关注在评论区回复“666”之后私信回复“666”,全部无偿共享给大家!!!开发兼过半年面试官 刚开始…...
安全加固 MariaDB 和 MySQL 数据库
安全加固 MariaDB 和 MySQL 数据库 在今天的网络环境中,保护数据库安全至关重要,特别是像 MariaDB 和 MySQL 这样的流行数据库。本文将介绍一些关键的安全加固步骤,以确保数据库系统的安全性和稳定性。 1. 数据库版本和基础设置 首先&…...
【计算机毕业设计】167校园失物招领微信小程序
🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板ÿ…...
yum的概念、相关命令、ftp http部署步骤;NFS共享文件操作步骤
目录 yum 配置文件 缓存功能操作步骤 创建并配置本地仓库文件 yum相关命令 yum install __ yum repolist yum list __ yum info __ yum search __ yum whatprovides __ yum remove __ yum -y update __ yum history yum grouplist yum groupinstall "__&q…...
Spire.PDF for .NET【文档操作】演示:如何删除 PDF 中的图层
借助Spire.PDF,我们可以在新建或现有pdf文档的任意页面中添加线条、图像、字符串、椭圆、矩形、饼图等多种图层。同时,它还支持我们从pdf文档中删除特定图层。 Spire.PDF for .NET 是一款独立 PDF 控件,用于 .NET 程序中创建、编辑和操作 PD…...
【c语言】二级指针
1,定义 本质还是从指针的角度去理解,只不过存的指针的值 2,使用方法...
心理健康测试系统设计
心理健康测试系统设计需要综合考虑多个方面,以确保系统的准确性、易用性和有效性。以下是一个心理健康测试系统设计方案: 一、设计目标 准确性:确保测试结果能够准确反映被测者的心理健康状况。 易用性:设计简洁明了的界面和操作…...
webcomponents学习
一、新建index.html文件 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document</title>…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
