当前位置: 首页 > news >正文

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

目录

    • 分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5

基本介绍

Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测,输入多个特征,分四类。
XGBoost的核心算法思想基本就是:不断地添加树,不断地进行特征分裂来生长一棵树,每次添加一个树,其实是学习一个新函数f(x),去拟合上次预测的残差。当我们训练完成得到k棵树,我们要预测一个样本的分数,其实就是根据这个样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点就对应一个分数。最后只需要将每棵树对应的分数加起来就是该样本的预测值。

程序设计

  • 完整程序和数据下载:Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);t_train = T_train;
t_test  = T_test;%%  数据转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';%%  参数设置
fun = @getObjValue;                 % 目标函数
dim = 3;                            % 优化参数个数
lb  = [001, 001, 0.01];             % 优化参数目标下限(最大迭代次数,深度,学习率)
ub  = [ 50, 012,  0.1];             % 优化参数目标上限(最大迭代次数,深度,学习率)

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关文章:

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测 目录 分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测,…...

说说 golang 中的接口和反射

1、接口 1.1 类型 Golang 中的接口是一组方法的签名,是实现多态和反射的基础。 type 接口名 interface {method1(参数列表) 返回值列表method2(参数列表) 返回值列表 }不同于 Java 语言,使用 implements 关键字显示的实现接口。Golang 接口的实现都是…...

小程序注册

【 一 】小程序注册 微信公众平台 https://mp.weixin.qq.com/ https://mp.weixin.qq.com/注册 邮箱激活 小程序账户注册 微信小程序配置 微信小程序开发流程 添加项目成员 【 二 】云服务 lass 基础设施服务(组装机) 你买了一大堆的电脑配件&#x…...

工作记录2

1. 要实现y轴超出部分滚动的效果&#xff0c;可以这样写 <div style"max-height: 384px; overflow-y: auto;"> </div> 2. 当后端接口还没好的时候&#xff0c;可以自己模拟一下接口返回的数据 export const getCommodityDetail (id) > Promise.re…...

linux挂载硬盘(解决linux不显示硬盘问题)

目录 1.查看系统有几块硬盘2.查看挂载情况3.格式化硬盘4.创建挂载目录用于挂载硬盘5.将硬盘挂载到指定的挂载目录6.随系统自启动挂载查看配置文件&#xff0c;看是否已经把这条命令加入配置 帮同门解决挂载失败问题记录 参考视频&#xff1a;只要6步&#xff01;Linux系统下挂载…...

运输标签扫描仪可简化运输和接收任务

Dynamic Web TWAIN 是一个专为Web应用程序设计的TWAIN扫描识别控件。你只需在TWAIN接口写几行代码&#xff0c;就可以用兼容TWAIN的扫描仪扫描文档或从数码相机/采集卡中获取图像。然后用户可以编辑图像并将图像保存为多种格式&#xff0c;用户可保存图像到远程数据库或者Share…...

Stable Diffusion 3 大模型文生图实践

windows教程2024年最新Stable Diffusion本地化部署详细攻略&#xff0c;手把手教程&#xff08;建议收藏!!)_stable diffusion 本地部署-CSDN博客 linux本地安装教程 1.前期准备工作 1&#xff09;创建conda环境 conda create --name stable3 python3.10 2&#xff09;下…...

Linux grep技巧 删除含有指定关键词的行,创建新文件

一. 需求 ⏹有如下文件&#xff0c;现要求 删除含有xuecheng关键字的行删除含有192.168.1.1关键字的行也就是说&#xff0c;最终只会留下127.0.0.1 license.sublimehq.com 127.0.0.1 www.xuecheng.com 127.0.0.1 img.xuecheng.com 192.168.1.1 www.test.com 127.0.0.1 video…...

ChatMoney还能写剧本杀?

本文由 ChatMoney团队出品 近年来&#xff0c;剧本杀作为一种新兴社交游戏&#xff0c;收到了越来越多人的喜爱&#xff0c;它不仅需要玩家们发挥自身演技&#xff0c;还需运用逻辑思维推理&#xff0c;分析所获得的线索&#xff0c;找出案件真凶。然而你是否想过&#xff0c;你…...

优化系统小工具

一款利用VB6编写的系统优化小工具&#xff0c;系统优化、桌面优化、清理垃圾、查找文件等功能。 下载:https://download.csdn.net/download/ty5858/89432367...

调幅信号AM的原理与matlab实现

平台&#xff1a;matlab r2021b 本文知识内容摘自《软件无线电原理和应用》 调幅就是使载波的振幅随调制信号的变化规律而变化。用音频信号进行调幅时&#xff0c;其数学表达式可以写为: 式中&#xff0c;为调制音频信号&#xff0c;为调制指数&#xff0c;它的范围在(0&…...

[MySql]两阶段提交

文章目录 什么是binlog使用binlog进行恢复的流程 什么是redolog缓冲池redologredolog结构 两阶段提交 什么是binlog binlog是二进制格式的文件&#xff0c;用于记录用户对数据库的修改&#xff0c;可以作用于主从复制过程中数据同步以及基于时间点的恢复&#xff08;PITR&…...

掌握rpc、grpc并探究内在本质

文章目录 rpc是什么&#xff1f;又如何实现服务通信&#xff1f;理解rpcRPC的通信过程通信协议的选择小结RPC VS Restful net_rpc实践案例net/rpc包介绍创建服务端创建client 看看net_rpc的通信调度实现的内部原理明确目标基于自己实现的角度分析我会怎么做代码分析 grpc介绍与…...

构造,析构,垃圾回收

构造函数 基本概念 在实例化对象时 会调用的用于初始化的函数 如果不写&#xff0c;默认存在一个无参构造函数 构造函数的写法 1.没有返回值 2.函数名和类名必须相同 3.没有特殊需求时&#xff0c;一般都是public的 4.构造函数可以被重载 5.this代表当前调用该函数的对…...

杂记 | 搭建反向代理防止OpenAI API被封禁(对于此次收到邮件提示7月9日后将被屏蔽的解决参考)

文章目录 重要声明&#xff08;免责&#xff09;01 OpenAI封禁API的情况02 解决方案及原理2.1 原因分析2.2 解决方案2.3 步骤概述 03 操作步骤3.1 购买一个海外服务器3.2 申请一个域名3.3 将域名指向代理服务器3.4 在代理服务器上安装nginx3.5 配置反向代理 重要声明&#xff0…...

利用ref实现防抖

结合vue的customRef function debounceRef(value,time1000){ let t return customRef((track,trigger)>{ return { get(){ track() return value; } set(val){ clearTimeout(t) tsetTimeout(()>{ trigger() valueval },time) } } }) }...

SAP ABAP 之OOALV

文章目录 前言一、案例介绍/笔者需求二、SE24 查看类 a.基本属性 Properties b.接口 Interfaces c.友元 Friends d.属性 Attributes e.方法 Methods f.事件 Events g.局部类型 Types …...

构建实用的Flutter文件列表:从简到繁的完美演进

前言&#xff1a;为什么我们需要文件列表&#xff1f; 在现代科技发展迅速的时代&#xff0c;我们的电脑、手机、平板等设备里积累了大量的文件&#xff0c;这些文件可能是我们的照片、文档、音频、视频等等。然而&#xff0c;当文件数量增多时&#xff0c;我们如何快速地找到…...

spring使用@PostConstruct踩得坑

情况说明&#xff1a; 在一个抽象类中使用PostConstruct注解方法init用于初始化操作。然后每个实现类在初始化时都会调用PostConstruct注解的init方法执行初始化操作。如下代码&#xff1a; public abstract class AbstractClass {/*** 存放各实例.*/public static final Map&…...

【Mac】XnViewMP for Mac(图片浏览查看器)及同类型软件介绍

软件介绍 XnViewMP 是一款多功能、跨平台的图像查看和管理软件&#xff0c;适用于 macOS、Windows 和 Linux 系统。它是经典 XnView 软件的增强版本&#xff0c;更加现代化且功能更强大。XnViewMP 支持数百种图像格式&#xff0c;并提供多种图像处理工具&#xff0c;使其成为摄…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...