当前位置: 首页 > news >正文

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

目录

    • 分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5

基本介绍

Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测,输入多个特征,分四类。
XGBoost的核心算法思想基本就是:不断地添加树,不断地进行特征分裂来生长一棵树,每次添加一个树,其实是学习一个新函数f(x),去拟合上次预测的残差。当我们训练完成得到k棵树,我们要预测一个样本的分数,其实就是根据这个样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点就对应一个分数。最后只需要将每棵树对应的分数加起来就是该样本的预测值。

程序设计

  • 完整程序和数据下载:Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);t_train = T_train;
t_test  = T_test;%%  数据转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';%%  参数设置
fun = @getObjValue;                 % 目标函数
dim = 3;                            % 优化参数个数
lb  = [001, 001, 0.01];             % 优化参数目标下限(最大迭代次数,深度,学习率)
ub  = [ 50, 012,  0.1];             % 优化参数目标上限(最大迭代次数,深度,学习率)

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关文章:

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测 目录 分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测,…...

说说 golang 中的接口和反射

1、接口 1.1 类型 Golang 中的接口是一组方法的签名,是实现多态和反射的基础。 type 接口名 interface {method1(参数列表) 返回值列表method2(参数列表) 返回值列表 }不同于 Java 语言,使用 implements 关键字显示的实现接口。Golang 接口的实现都是…...

小程序注册

【 一 】小程序注册 微信公众平台 https://mp.weixin.qq.com/ https://mp.weixin.qq.com/注册 邮箱激活 小程序账户注册 微信小程序配置 微信小程序开发流程 添加项目成员 【 二 】云服务 lass 基础设施服务(组装机) 你买了一大堆的电脑配件&#x…...

工作记录2

1. 要实现y轴超出部分滚动的效果&#xff0c;可以这样写 <div style"max-height: 384px; overflow-y: auto;"> </div> 2. 当后端接口还没好的时候&#xff0c;可以自己模拟一下接口返回的数据 export const getCommodityDetail (id) > Promise.re…...

linux挂载硬盘(解决linux不显示硬盘问题)

目录 1.查看系统有几块硬盘2.查看挂载情况3.格式化硬盘4.创建挂载目录用于挂载硬盘5.将硬盘挂载到指定的挂载目录6.随系统自启动挂载查看配置文件&#xff0c;看是否已经把这条命令加入配置 帮同门解决挂载失败问题记录 参考视频&#xff1a;只要6步&#xff01;Linux系统下挂载…...

运输标签扫描仪可简化运输和接收任务

Dynamic Web TWAIN 是一个专为Web应用程序设计的TWAIN扫描识别控件。你只需在TWAIN接口写几行代码&#xff0c;就可以用兼容TWAIN的扫描仪扫描文档或从数码相机/采集卡中获取图像。然后用户可以编辑图像并将图像保存为多种格式&#xff0c;用户可保存图像到远程数据库或者Share…...

Stable Diffusion 3 大模型文生图实践

windows教程2024年最新Stable Diffusion本地化部署详细攻略&#xff0c;手把手教程&#xff08;建议收藏!!)_stable diffusion 本地部署-CSDN博客 linux本地安装教程 1.前期准备工作 1&#xff09;创建conda环境 conda create --name stable3 python3.10 2&#xff09;下…...

Linux grep技巧 删除含有指定关键词的行,创建新文件

一. 需求 ⏹有如下文件&#xff0c;现要求 删除含有xuecheng关键字的行删除含有192.168.1.1关键字的行也就是说&#xff0c;最终只会留下127.0.0.1 license.sublimehq.com 127.0.0.1 www.xuecheng.com 127.0.0.1 img.xuecheng.com 192.168.1.1 www.test.com 127.0.0.1 video…...

ChatMoney还能写剧本杀?

本文由 ChatMoney团队出品 近年来&#xff0c;剧本杀作为一种新兴社交游戏&#xff0c;收到了越来越多人的喜爱&#xff0c;它不仅需要玩家们发挥自身演技&#xff0c;还需运用逻辑思维推理&#xff0c;分析所获得的线索&#xff0c;找出案件真凶。然而你是否想过&#xff0c;你…...

优化系统小工具

一款利用VB6编写的系统优化小工具&#xff0c;系统优化、桌面优化、清理垃圾、查找文件等功能。 下载:https://download.csdn.net/download/ty5858/89432367...

调幅信号AM的原理与matlab实现

平台&#xff1a;matlab r2021b 本文知识内容摘自《软件无线电原理和应用》 调幅就是使载波的振幅随调制信号的变化规律而变化。用音频信号进行调幅时&#xff0c;其数学表达式可以写为: 式中&#xff0c;为调制音频信号&#xff0c;为调制指数&#xff0c;它的范围在(0&…...

[MySql]两阶段提交

文章目录 什么是binlog使用binlog进行恢复的流程 什么是redolog缓冲池redologredolog结构 两阶段提交 什么是binlog binlog是二进制格式的文件&#xff0c;用于记录用户对数据库的修改&#xff0c;可以作用于主从复制过程中数据同步以及基于时间点的恢复&#xff08;PITR&…...

掌握rpc、grpc并探究内在本质

文章目录 rpc是什么&#xff1f;又如何实现服务通信&#xff1f;理解rpcRPC的通信过程通信协议的选择小结RPC VS Restful net_rpc实践案例net/rpc包介绍创建服务端创建client 看看net_rpc的通信调度实现的内部原理明确目标基于自己实现的角度分析我会怎么做代码分析 grpc介绍与…...

构造,析构,垃圾回收

构造函数 基本概念 在实例化对象时 会调用的用于初始化的函数 如果不写&#xff0c;默认存在一个无参构造函数 构造函数的写法 1.没有返回值 2.函数名和类名必须相同 3.没有特殊需求时&#xff0c;一般都是public的 4.构造函数可以被重载 5.this代表当前调用该函数的对…...

杂记 | 搭建反向代理防止OpenAI API被封禁(对于此次收到邮件提示7月9日后将被屏蔽的解决参考)

文章目录 重要声明&#xff08;免责&#xff09;01 OpenAI封禁API的情况02 解决方案及原理2.1 原因分析2.2 解决方案2.3 步骤概述 03 操作步骤3.1 购买一个海外服务器3.2 申请一个域名3.3 将域名指向代理服务器3.4 在代理服务器上安装nginx3.5 配置反向代理 重要声明&#xff0…...

利用ref实现防抖

结合vue的customRef function debounceRef(value,time1000){ let t return customRef((track,trigger)>{ return { get(){ track() return value; } set(val){ clearTimeout(t) tsetTimeout(()>{ trigger() valueval },time) } } }) }...

SAP ABAP 之OOALV

文章目录 前言一、案例介绍/笔者需求二、SE24 查看类 a.基本属性 Properties b.接口 Interfaces c.友元 Friends d.属性 Attributes e.方法 Methods f.事件 Events g.局部类型 Types …...

构建实用的Flutter文件列表:从简到繁的完美演进

前言&#xff1a;为什么我们需要文件列表&#xff1f; 在现代科技发展迅速的时代&#xff0c;我们的电脑、手机、平板等设备里积累了大量的文件&#xff0c;这些文件可能是我们的照片、文档、音频、视频等等。然而&#xff0c;当文件数量增多时&#xff0c;我们如何快速地找到…...

spring使用@PostConstruct踩得坑

情况说明&#xff1a; 在一个抽象类中使用PostConstruct注解方法init用于初始化操作。然后每个实现类在初始化时都会调用PostConstruct注解的init方法执行初始化操作。如下代码&#xff1a; public abstract class AbstractClass {/*** 存放各实例.*/public static final Map&…...

【Mac】XnViewMP for Mac(图片浏览查看器)及同类型软件介绍

软件介绍 XnViewMP 是一款多功能、跨平台的图像查看和管理软件&#xff0c;适用于 macOS、Windows 和 Linux 系统。它是经典 XnView 软件的增强版本&#xff0c;更加现代化且功能更强大。XnViewMP 支持数百种图像格式&#xff0c;并提供多种图像处理工具&#xff0c;使其成为摄…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源&#xff0c;提供了很全面的思路&#xff0c;减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接&#xff1a;https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架&#xff1a; 代码框架结构&#xff1a;readme有…...

如何把工业通信协议转换成http websocket

1.现状 工业通信协议多数工作在边缘设备上&#xff0c;比如&#xff1a;PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发&#xff0c;当设备上用的是modbus从站时&#xff0c;采集设备数据需要开发modbus主站&#xff1b;当设备上用的是西门子PN协议时&#xf…...

qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001

qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类&#xff0c;直接把源文件拖进VS的项目里&#xff0c;然后VS卡住十秒&#xff0c;然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分&#xff0c;导致编译的时候找不到了。因…...