昇思25天学习打卡营第3天 | 数据集 Dataset

数据是深度学习的基础,高质量的数据输入将在整个深度神经网络中起到积极作用。MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。其中Dataset是Pipeline的起始,用于加载原始数据。mindspore.dataset提供了内置的文本、图像、音频等数据集加载接口,并提供了自定义数据集加载接口。
环境搭建
首先,搭建环境并导入所需包。
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14import numpy as np
from mindspore.dataset import vision
from mindspore.dataset import MnistDataset, GeneratorDataset
import matplotlib.pyplot as plt
数据集加载
我们使用Mnist数据集作为样例,演示如何使用mindspore.dataset进行加载。需要注意的是,mindspore.dataset提供的接口仅支持解压后的数据文件,因此我们使用download库下载数据集并解压。
# Download data from open datasets
from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
压缩文件下载并解压后,直接加载数据集,可以看到其数据类型为MnistDataset。
train_dataset = MnistDataset("MNIST_Data/train", shuffle=False)
print(type(train_dataset))
<class 'mindspore.dataset.engine.datasets_vision.MnistDataset'>
数据集迭代
数据集加载后,通常以迭代方式获取数据,然后送入神经网络中进行训练。我们可以用create_tuple_iterator或create_dict_iterator接口创建数据迭代器,迭代访问数据。
访问的数据类型默认为Tensor;若设置output_numpy=True,访问的数据类型为Numpy。
下面定义一个可视化函数,迭代9张图片进行展示。
def visualize(dataset):figure = plt.figure(figsize=(4, 4))cols, rows = 3, 3plt.subplots_adjust(wspace=0.5, hspace=0.5)for idx, (image, label) in enumerate(dataset.create_tuple_iterator()):figure.add_subplot(rows, cols, idx + 1)plt.title(int(label))plt.axis("off")plt.imshow(image.asnumpy().squeeze(), cmap="gray")if idx == cols * rows - 1:breakplt.show()
visualize(train_dataset)

数据集常用操作
Pipeline的设计理念使得数据集的常用操作采用dataset = dataset.operation()的异步执行方式,执行操作返回新的Dataset,此时不执行具体操作,而是在Pipeline中加入节点,最终进行迭代时,并行执行整个Pipeline。
shuffle
数据集随机shuffle可以消除数据排列造成的分布不均问题。
mindspore.dataset提供的数据集在加载时可配置shuffle=True,或使用如下操作:

train_dataset = train_dataset.shuffle(buffer_size=64)
visualize(train_dataset)

map
map操作是数据预处理的关键操作,可以针对数据集指定列(column)添加数据变换(Transforms),将数据变换应用于该列数据的每个元素,并返回包含变换后元素的新数据集。
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape, image.dtype)
(28, 28, 1) UInt8
这里对Mnist数据集做数据缩放处理,将图像统一除以255,数据类型由uint8转为了float32。
train_dataset = train_dataset.map(vision.Rescale(1.0 / 255.0, 0), input_columns='image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape, image.dtype)
(28, 28, 1) Float32
batch
batch的作用是将数据集打包为固定大小的batch,适用于在有限硬件资源下使用梯度下降进行模型优化。一般设置一个固定的batch size,将连续的数据分为若干批(batch)。

train_dataset = train_dataset.batch(batch_size=32)
batch后的数据增加一维,大小为batch_size。
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape, image.dtype)
(32, 28, 28, 1) Float32
自定义数据集
mindspore.dataset模块提供了一些常用的公开数据集和标准格式数据集的加载API。
对于MindSpore暂不支持直接加载的数据集,可以构造自定义数据加载类或自定义数据集生成函数的方式来生成数据集,然后通过GeneratorDataset接口实现自定义方式的数据集加载。
GeneratorDataset支持通过可随机访问数据集对象、可迭代数据集对象和生成器(generator)构造自定义数据集,下面分别对其进行介绍。
可随机访问数据集
可随机访问数据集是实现了__getitem__和__len__方法的数据集,表示可以通过索引/键直接访问对应位置的数据样本。例如,当使用dataset[idx]访问这样的数据集时,可以读取dataset内容中第idx个样本或标签。
# Random-accessible object as input source
class RandomAccessDataset:def __init__(self):self._data = np.ones((5, 2))self._label = np.zeros((5, 1))def __getitem__(self, index):return self._data[index], self._label[index]def __len__(self):return len(self._data)
loader = RandomAccessDataset()
dataset = GeneratorDataset(source=loader, column_names=["data", "label"])for data in dataset:print(data)
[Tensor(shape=[2], dtype=Float64, value= [ 1.00000000e+00, 1.00000000e+00]), Tensor(shape=[1], dtype=Float64, value= [ 0.00000000e+00])]
...
# list, tuple are also supported.
loader = [np.array(0), np.array(1), np.array(2)]
dataset = GeneratorDataset(source=loader, column_names=["data"])for data in dataset:print(data)
[Tensor(shape=[], dtype=Int64, value= 0)]
...
可迭代数据集
可迭代的数据集是实现了__iter__和__next__方法的数据集,表示可以通过迭代的方式逐步获取数据样本。这种类型的数据集特别适用于随机访问成本太高或者不可行的情况。
例如,当使用iter(dataset)的形式访问数据集时,可以读取从数据库、远程服务器返回的数据流。
下面构造一个简单迭代器,并将其加载至GeneratorDataset。
# Iterator as input source
class IterableDataset():def __init__(self, start, end):'''init the class object to hold the data'''self.start = startself.end = enddef __next__(self):'''iter one data and return'''return next(self.data)def __iter__(self):'''reset the iter'''self.data = iter(range(self.start, self.end))return self
loader = IterableDataset(1, 5)
dataset = GeneratorDataset(source=loader, column_names=["data"])for d in dataset:print(d)
[Tensor(shape=[], dtype=Int64, value= 1)]
...
学习心得
在本次学习中,我掌握了如何使用MindSpore进行数据集加载和预处理。通过实验,了解了Mnist数据集的加载、shuffle、map和batch等操作的具体实现。此外,还学习了自定义数据集的构建方法。这些技能将有助于提高深度学习模型的性能和效率。
相关文章:
昇思25天学习打卡营第3天 | 数据集 Dataset
数据是深度学习的基础,高质量的数据输入将在整个深度神经网络中起到积极作用。MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。其中Dataset是Pipel…...
交换机三层架构及对流量的转发机制
交换机的作用: 区别集线器(HUB); HUB 为物理层设备,只能直接转发电流 交换机为数据链路层设备,可以将电流与二进制转换,实现了以下功能: 无限的传输距离 彻底解决了冲突-所有的接口可以同时收发数据 二…...
开发者配置项、开发者选项自定义
devOptions.vue源码 <!-- 开发者选项 (CtrlAltShiftD)--> <template><div :class"$options.name" v-if"visible"><el-dialog:custom-class"sg-el-dialog":append-to-body"true":close-on…...
【Java】解决Java报错:IndexOutOfBoundsException in Collections
文章目录 引言一、IndexOutOfBoundsException的定义与概述1. 什么是IndexOutOfBoundsException?2. IndexOutOfBoundsException的常见触发场景3. 示例代码 二、解决方案1. 检查索引范围2. 使用增强型for循环3. 使用ListIterator进行遍历4. 使用线程安全的集合 三、最…...
C++编程(三)面向对象
文章目录 一、概念二、类的定义(一)声明一个类类型的语法格式:(二)类中的访问控制权限(三)实例化对象1. 栈区对象2. 堆区对象 (四)类内声明类外实现(五&#…...
Batch入门教程
Batch学习在多个领域有不同的应用,但最常见的是在机器学习和教育学习领域。以下是一个关于Batch学习入门的清晰指南,将分别介绍这两个领域中的Batch学习概念、方法和一些实用信息。 1. 机器学习中的Batch学习 定义与概念 Batch_Size:在机器…...
49-2 内网渗透 - 使用UACME Bypass UAC
靶场准备: 1. 使用已有的 Windows 2012 虚拟机 确保你的虚拟机正在运行,并且可以正常访问。2. 添加 test 用户到管理员组(如上篇文件添加过了就跳过这一步) 具体命令如下: net localgroup administrators test /add 3. 切换用户登录 注销当前会话,并使用 test 用户登录。…...
Django 表单使用示例:数据格式校验
在本文中,我们将使用 Django 的表单(Forms)功能来创建一个添加角色的页面,并对用户提交的数据进行格式校验。 创建 Django 项目和应用 首先,我们创建一个名为 form_demo 的 Django 项目和一个名为 app01 的应用: django-admin startproject form_de…...
OkHttp框架源码深度剖析【Android热门框架分析第一弹】
OkHttp介绍 OkHttp是当下Android使用最频繁的网络请求框架,由Square公司开源。Google在Android4.4以后开始将源码中的HttpURLConnection底层实现替换为OKHttp,同时现在流行的Retrofit框架底层同样是使用OKHttp的。 源码传送门 优点: 支持Http1、Http…...
【MySQL】数据库——备份与恢复,日志管理1
一、数据备份的重要性 1.备份的主要目的是灾难恢复 在生产环境中,数据的安全性至关重要 任何数据的丢失都可能产生严重的后果造成数据丢失的原因: 程序错误人为,操作错误运算错误磁盘故障灾难(如火灾、地震)和盗窃 2.数据库备份…...
什么样的企业适合SD-WAN网络专线?
SD-WAN(Software-Defined Wide Area Network,软件定义广域网)是一种网络技术,它利用软件定义的方式管理和控制广域网(WAN),旨在提高网络效率、降低成本并简化网络管理。以下是适合采用SD-WAN网络…...
已解决java.security.GeneralSecurityException: 安全性相关的通用异常的正确解决方法,亲测有效!!!
已解决java.security.GeneralSecurityException: 安全性相关的通用异常的正确解决方法,亲测有效!!! 目录 问题分析 报错原因 解决思路 解决方法 确定具体异常类型 检查输入参数 验证算法支持性 调整安全策略 确保资源可…...
秋招Java后端开发冲刺——非关系型数据库篇(Redis)
一、非关系型数据库 1. 主要针对的是键值、文档以及图形类型数据存储。 2. 特点: 特点说明灵活的数据模型支持多种数据模型(文档、键值、列族、图),无需预定义固定的表结构,能够处理各种类型的数据。高扩展性设计为水…...
个人对JVM的一点理解
JVM(Java 虚拟机)是 Java 程序能够跨平台运行的关键。它负责将 Java 字节码转换为机器码并执行。 JVM 主要由类加载器、运行时数据区、执行引擎和本地方法接口等部分组成。运行时数据区包括方法区、堆、虚拟机栈、本地方法栈和程序计数器等。 GC…...
Flutter【组件】可折叠文本组件
简介 flutter 可折叠文本组件。 点击展开,收起折叠文本。支持样式自定义 github地址: github.com/ThinkerJack… pub地址:https://pub.dev/packages/jac_uikit 展开收起文本 使用方式: ExpandableText(content: 测试 * 50,ma…...
内容安全复习 7 - 对抗攻击与防御
文章目录 概述攻击对抗性攻击的目的攻击的损失函数如何攻击FGSM黑盒与白盒真实世界的攻击 防御被动防御主动防御 概述 动机 (1)不仅要在实验室中部署机器学习分类器,也要在现实世界中部署;实际应用 (2)分类…...
淘宝店铺商家订单API-接入ERP,多平台订单同步的利器
淘宝开放平台给商家们提供了丰富的API,以方便大家扩展业务流程。但是需要调用这些API,商家们要提交资质审核,审核条件也是很严格的。第三方数据公司的存在可以为大家解决这个问题。 custom-自定义API操作 请求参数 请求参数:ap…...
【微前端-Single-SPA、qiankun的基本原理和使用】
背景 在实际项目中,随着日常跌倒导致的必然墒增,项目会越来越冗余不好维护,而且有时候一个项目会使用的其他团队的功能,这种跨团队不好维护和管理等等问题,所以基于解决这些问题,出现了微前端的解决方案。…...
多元化功能空间,打造影像产业生态圈
国际数字影像产业园的多元化功能空间定位涵盖了从产业实训、研发创新、资产交易、集群发展到孵化服务、大数据支持、产学研合作以及人力资源服务等多个方面,旨在为数字影像产业提供全方位的支持和服务,推动产业的升级和发展。 1、产业实训空间࿱…...
华为鸿蒙正式杀入工业自动化,反攻开始了!
导语 大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。 新书《智能物流系统构成与技术实践》 在近日举行的2024华为开发者大会上,华龙讯达与华为共同发布了基于鸿蒙内核技术的“HualongOS 华龙工业操作系统”,这一里…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
