当前位置: 首页 > news >正文

江协科技51单片机学习- p16 矩阵键盘

🚀write in front🚀  
🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​ 

💬本系列哔哩哔哩江科大51单片机的视频为主以及自己的总结梳理📚 

前言:

本文是根据哔哩哔哩网站上“江协科技51单片机”视频的学习笔记,在这里会记录下江协科技51单片机开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了江协科技51单片机教学视频和链接中的内容。

引用:

51单片机入门教程-2020版 程序全程纯手打 从零开始入门_哔哩哔哩_bilibili

​​​​​​c51语言变量语句意思,C51中循环语句-CSDN博客

矩阵键盘引用:

【51单片机】矩阵键盘_51单片机4×4矩阵键盘-CSDN博客

51单片机学习笔记 ——(二)矩阵键盘_51单片机 矩阵键盘-CSDN博客

郭天祥:

(51单片机)第三章-数码管显示原理及应用实现-中断_51单片机数码管中断程序-CSDN博客

正文:

0. 🌿概述

在淘宝上购买了江协科技51单片机开发板套件(普中科技STC51单片机A2型号),就上在上一篇博文里说的自己计划学习下江协科技51单片机开发教程,通过STC51单片机这种MCU这种贴近于裸机的开发来增加对于系统硬件层面知识的了解和掌握。

1. 🚀矩阵键盘

  • 在键盘中当按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵的形式。
  • 采用逐行或逐列的“扫描”,就可以独处任何位置按键的状态。

矩阵键盘的目的是减少I/O口占用 

矩阵键盘采用的是矩阵的连接方式,目的是为了减少IO口的使用。

如果每一个按键都像独立按键一样专门使用一个IO口来控制,那么我们需要的IO口数量就是行×列个。

但是如果采用矩阵的连接方式,我们需要的IO口数目就会变成行+列个,矩阵的行列数越多,减小的程度就越明显。

但是按照矩阵形式排列也会出现一些不方便的结果,所以我们采用了类似之前数码管的解决方式——扫描。

但是与数码管的扫描略有不同,数码管是输出元件,所以数码管的扫描是输出扫描,我们不断循环输出不同的值,利用人眼的视觉暂留实现我们需要的操作。

而矩阵键盘是输入元件,所以我们矩阵键盘采用的扫描是输入扫描,以非常快的速度不断循环读取IO口的值,达到与正常按键相同的效果。这里还是利用了扫描速度远大于人操作的速度的原理。

那么如何实现上述操作呢?

与之前的独立按键进行比较,如果我们单独看矩阵键盘的一行或者一列,就会发现它们有着相同的结构,在此用列来进行比较(用行同理)

2. 🚀 单片机IO口(准双向口)

单片机的io口是一种弱上拉的模式~!又被称作是准双向口(input,output) 既可以输入又可以输出,这种就叫做是双向口。

  • 但是这种双向口有点问题:这么样才可以达到输入或者是输出呢 ?像我们这种矩阵键盘的话是不是给上,一端是0,然后读取另一头。
  • 但是另一头你怎么知道它是一种输入低电平)呢?它其实也是作为一种输出端(高电平),它既是输出(高电平)也是输入(低电平)。
  • 那么为什么单片机它的 io 口是默认为高电平呢?是因为它里面拥有一个上拉电阻把低电平变成高电平了 !所以才导致单片机是高电平,
  • 还有一个是当口输出为1的时候驱动能力很弱,允许外部装置将其拉低。当引脚的输出为低电平的时候,它的驱动能力很强,可以吸收相当大的电流。单片机中 P1、P2、P3 都是一种弱上拉的一种模式。

准双向口输出如下所示:

 单片机的io口是一种弱上拉的模式~!又被称作是准双向口(input,output) 既可以输入又可以输出,这种就叫做是双向口。此种双向口是弱上拉,强下拉,当将IO的输出当为1的时候驱动能力很弱,允许外部装置将其拉。当引脚的输出为低电平的时候,它的驱动能力很强,可以吸收相当大的电流。

单片机中 P1、P2、P3 都是一种弱上拉的一种模式。

单片机中 P0 口是开漏输出模式。

一般按键检测都是接地,检测第电平。为什么不接Vcc,检测高电平哪,因为I/O口配置为低电平要将其拉高为高电平需要比较大的电流。 

准双向口是一种弱上拉模式,可以用如下的示意图来解释:当IO口开关选择输出1 高电平时,通过电阻接Vcc进行弱上拉其上拉输出能力比较弱,此时I/O接口如果接地可以将其拉低为低电平。

 3. 🚀矩阵键盘扫描

 首先我们需要知道51单片机的引脚默认为高电平,所以我们需要对这8个引脚进行一个初始化,即P1 = 0xFF ;这样就和独立按键的操作基本一致了。

  • 可以发现,如果我们此时只给P13低电平,第一列就和独立按键一样了。
  • 接下来需要做的就是判断在P13为低电平时,P14、P15、P16、P17是否为低电平。如果是,则说明此时有按键按下,接通了电路,使原来是高电平的引脚变为了低电平。
  • 第一列扫描完后,重新初始化P1 = 0xFF ;然后给P12低电平,继续检测P14、P15、P16、P17是否为低电平。
  •  以此类推,不断循环读取按键是否按下,就达到了随时按下任意按键都可以检测出来的效果

 本实验使用的普中科技C51单片机开发板矩阵键盘扫描时需要注意的点,因为开发板的引脚复用冲突,本实验使用按列扫描的方式。

我们这个开发板 P1_5 口可能会有问题,P1_5口可能一会读到高电平一会读到第 电平,因为在此开发板是行 P1_5 连接到了 Beep ,会造成蜂鸣器鸣叫。

为了避免这个问题,此实验中使用逐列扫描的方式。

 4. 🚀源码编写

本次实验使用逐列扫描矩阵键盘的方式,来检测有哪个按键被按下。

matrix.h

#ifndef __MATRIX_H__
#define __MATRIX_H__unsigned char MatrixKey();#endif

matrix.c

#include <REGX52.H>
#include "Delay.h"
#include "matrix.h"/*** @brief  获取按下按键的键值* @param  无* @retval 按下按键的键值,没有按键按下时返回0*		    S1=1, S1=2, S3=3, S4=4, S5=5, S6=6, S7=7, S8=8*		    S9=9, S10=0, S3=3, S11=确认, S12=取消, S13=删除, S14=,*/
unsigned char MatrixKey()
{unsigned char keyNumber = 0;//每次扫描键盘之前,先把P1全部初始化为高电平P1=0xFF;P1_3 = 0;//delay(20)延时进行按键按下消抖, while循环检测松手, delay(20) 按键松开消抖if(P1_7 == 0) {Delay(20); while(P1_7 == 0); Delay(20); keyNumber = 1;}	if(P1_6 == 0) {Delay(20); while(P1_6 == 0); Delay(20); keyNumber = 5;}if(P1_5 == 0) {Delay(20); while(P1_5 == 0); Delay(20); keyNumber = 9;}if(P1_4 == 0) {Delay(20); while(P1_4 == 0); Delay(20); keyNumber = 13;}P1=0xFF;P1_2 = 0;if(P1_7 == 0) {Delay(20); while(P1_7 == 0); Delay(20); keyNumber = 2;}if(P1_6 == 0) {Delay(20); while(P1_6 == 0); Delay(20); keyNumber = 6;}if(P1_5 == 0) {Delay(20); while(P1_5 == 0); Delay(20); keyNumber = 10;}if(P1_4 == 0) {Delay(20); while(P1_4 == 0); Delay(20); keyNumber = 14;}P1=0xFF;P1_1 = 0;if(P1_7 == 0) {Delay(20); while(P1_7 == 0); Delay(20); keyNumber = 3;}if(P1_6 == 0) {Delay(20); while(P1_6 == 0); Delay(20); keyNumber = 7;}if(P1_5 == 0) {Delay(20); while(P1_5 == 0); Delay(20); keyNumber = 11;}if(P1_4 == 0) {Delay(20); while(P1_4 == 0); Delay(20); keyNumber = 15;}P1=0xFF;P1_0 = 0;if(P1_7 == 0) {Delay(20); while(P1_7 == 0); Delay(20); keyNumber = 4;}if(P1_6 == 0) {Delay(20); while(P1_6 == 0); Delay(20); keyNumber = 8;}if(P1_5 == 0) {Delay(20); while(P1_5 == 0); Delay(20); keyNumber = 12;}if(P1_4 == 0) {Delay(20); while(P1_4 == 0); Delay(20); keyNumber = 16;}return keyNumber;
}

 main.c 

#include <REGX52.H>
#include <INTRINS.H>
#include "delay.h"
#include "lcd1602.h"
#include "matrix.h"void main()
{unsigned char keyNum = 0;LCD_Init();//LCD_ShowString(1, 1, "Matrix Key!");while(1){keyNum = MatrixKey();if(keyNum){LCD_ShowNum(1, 1, keyNum, 2);}}
}

5. 🚒总结

  • 🍒通过本实验了解了STC51单片机的I/O口准双向口,I/O口的为弱上拉,单片机的I/O口即是输出同时也是输入。因为单片机I/O口是弱上拉,当I/O口输出为1时允许通过外部输入将其下拉为低电平。
  • 🍒STC51单片机的 P1, P2, P3 口为准双向I/O口,弱上拉模式。
  • 🍒STC51单片机的 P0 口默认为开漏输出模式。
  • 🍒当按键较多时,使用矩阵键盘可以节省I/O口资源。
  • 🍒矩阵键盘的检测方式是按照行逐行扫描,或者按照列逐列扫描。
  • 🍒每次扫描之前需要先将所有的矩阵键盘行和列的I/O口置为1,然后给某一行或列低电平,然后按照行或列扫描,检测另一端的输入电平。

 6. 🍎结束

本文至此结束

相关文章:

江协科技51单片机学习- p16 矩阵键盘

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…...

grpc学习golang版( 四、多服务示例)

系列文章目录 第一章 grpc基本概念与安装 第二章 grpc入门示例 第三章 proto文件数据类型 第四章 多服务示例 文章目录 一、前言二、定义proto文件三、编写server服务端四、编写Client客户端五、测试六、示例代码 一、前言 多服务&#xff0c;即一个rpc提供多个服务给外界调用…...

Linux安装jdk17

我们进入到cd /usr/lib/下然后创建一个jdk17的文件夹 mkdir jdk17 进入到jdk17目录下 下载jdk17包 上传到Linux 解压jar包 tar -zxvf jdk-17_linux-x64_bin.tar.gz压解完毕后 配置环境变量 vim/etc/profilei 修改 esc 退出 :wq保存 export JAVA_HOME/usr/lib/jdk17/jdk-1…...

Java家教系统小程序APP公众号h5源码

让学习更高效&#xff0c;更便捷 &#x1f31f; 引言&#xff1a;家教新选择&#xff0c;小程序来助力 在快节奏的现代生活中&#xff0c;家长们越来越注重孩子的教育问题。然而&#xff0c;如何为孩子找到一位合适的家教老师&#xff0c;成为了许多家长头疼的问题。现在&…...

PHP入门

一、环境搭建 无脑&#xff1a; 小皮面板(phpstudy) - 让天下没有难配的服务器环境&#xff01;phpStudy官网2019正式推出phpStudy V8.0版本PHP集成环境&#xff0c;支持Windows与Linux系统&#xff0c;支持WEB面板操作管理&#xff0c;一键网站开发环境搭建配置&#xff0c;…...

docker ce的使用介绍

docker docker17.03以后 docker ce&#xff0c;社区免费版&#xff0c;vscode的docker插件使用的该版本&#xff08;默认windows只支持windows容器&#xff0c;linux支持linux容器&#xff09;docker ee&#xff0c;企业版本 docker17.03以前 docker toolbox&#xff0c;基于…...

SpringCloud Alibaba Sentinel 流量控制之流控模式实践总结

官网文档&#xff1a;https://sentinelguard.io/zh-cn/docs/flow-control.html wiki地址&#xff1a;https://github.com/alibaba/Sentinel/wiki/%E6%B5%81%E9%87%8F%E6%8E%A7%E5%88%B6 本文版本&#xff1a;spring-cloud-starter-alibaba&#xff1a;2.2.0.RELEASE 如下图所…...

【高考志愿】电子科学与技术

高考志愿选择电子科学与技术专业&#xff0c;无疑是向着科技创新的前沿迈出坚定步伐的明智之选。这一专业以其深厚的理论基础、前沿的技术应用和广泛的就业前景&#xff0c;吸引了众多有志于投身科技领域的学子。 首先&#xff0c;电子科学与技术专业所涵盖的内容丰富而深入。它…...

2024.06.26【读书笔记】|医疗科技创新流程(前言)【AI增强版】

目录 《BIODESIGN》第二版前言详细总结前言概述新增重要内容价值导向 (Value Orientation)全球视角 (Global Perspectives)更好的教学和学习方法 (Better Ways to Teach and Learn)全新视频集合 (New Videos)扩展的“实地”案例研究 (Expanded “From the Field” Case Studies…...

kubernetes Job yaml文件解析

一、yaml文件示例 apiVersion: batch/v1 kind: Job metadata:name: test-jobnamespace: mtactor spec:completions: 3parallelism: 1backoffLimit: 5activeDeadlineSeconds: 100template:spec:containers:- name: test-jobimage: centoscommand: ["echo","test…...

php goto解密脚本源码

php goto解密脚本源码 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/89426171 更多资源下载&#xff1a;关注我。...

2023: 芒种集•序言

2023: 芒种集•序言 2023: 芒种集•序言 从西南旅游回来&#xff0c;一直忙着整理游记“2024&#xff1a;追寻红色足迹”&#xff0c;之后又应初建平索要刘桂蓉遗作“我们一起走过”&#xff0c;于是把“别了&#xff0c;老屋”和诗作“二月”一并合编&#xff0c;把我写的悼念…...

Camera定制修改

需求&#xff1a; Android13 MtkCamera右上角的前后摄切换点击范围小导致经常点击无反应&#xff0c;需增大view宽度 跟踪代码可找到对应资源文件&#xff1a;vendor\mediatek\proprietary\packages\apps\Camera2\feature\setting\cameraswitcher\res\ 根据vendor\mediatek\…...

LeetCode 算法:验证二叉搜索树 c++

原题链接&#x1f517;&#xff1a;验证二叉搜索树 难度&#xff1a;中等⭐️⭐️ 题目 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&#xff1a; 节点的左 子树 只包含 小于 当前节点的数。节点的右子树只包含 大于…...

SpringBoot优点达项目实战:获取系统配置接口(三)

SpringBoot优点达项目实战&#xff1a;获取系统配置接口&#xff08;二&#xff09; 文章目录 SpringBoot优点达项目实战&#xff1a;获取系统配置接口&#xff08;二&#xff09;1、查看接口2、查看数据库3、代码实现1、创建实体类SysConfig2、创建返回数据的vo3、创建control…...

【C语言】字符/字符串+内存函数

目录 Ⅰ、字符函数和字符串函数 1 .strlen 2.strcpy 3.strcat 4.strcmp 5.strncpy 6.strncat 7.strncmp 8.strstr 9.strtok 10.strerror 11.字符函数 12. 字符转换函数 Ⅱ、内存函数 1 .memcpy 2.memmove 3.memcmp Ⅰ、字符函数和字符串函数 1 .strlen 函数原型&#xff1a;…...

上下文管理器在Python中的妙用

更多Python学习内容&#xff1a;ipengtao.com Python上下文管理器是一个非常强大的工具&#xff0c;它能够帮助开发者在特定代码块前后自动执行特定的操作&#xff0c;常用于资源管理&#xff0c;如文件操作、数据库连接和锁定等。本文将详细介绍Python上下文管理器的概念、使用…...

【PWN · TcachebinAttack | UAF】[2024CISCN · 华中赛区] note

一道简单的tcache劫持 一、题目 二、思路 存在UAF&#xff0c;libc版本2.31&#xff0c;经典菜单题 1.通过unsorted-bin-attack来leak-libc 2.通过uaf打tcache-bin-attack劫持__free_hook实现getshell 三、EXP from pwn import * context(archamd64,log_leveldebug)ioproce…...

Java数据脱敏

数据脱敏 敏感数据在存储过程中为是否为明文, 分为两种 落地脱敏: 存储的都是明文, 返回之前做脱敏处理不落地脱敏: 存储前就脱敏, 使用时解密, 即用户数据进入系统, 脱敏存储到数据库中, 查询时反向解密 落地脱敏 这里指的是数据库中存储的是明文数据, 返回给前端的时候脱…...

【Java Web】三大域对象

目录 一、域对象概述 二、三大域对象 三、域对象使用相关API 一、域对象概述 一些可用于存储数据和传递数据的对象被称为域对象&#xff0c;根据传递数据范围的不同&#xff0c;我们称之为不同的域&#xff0c;不同的域对象代表不同的域&#xff0c;共享数据的范围也不同。 二、…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...