Python | 使用均值编码(MeanEncoding)处理分类特征
在特征工程中,将分类特征转换为数字特征的任务称为编码。
有多种方法来处理分类特征,如OneHotEncoding和LabelEncoding,FrequencyEncoding或通过其计数替换分类特征。同样,我们可以使用均值编码(MeanEncoding)。
均值编码
均值编码是一种将类别特征映射为目标变量均值的编码方法。它利用了目标变量在不同类别取值上的统计特性,为每个类别赋予一个相应的编码值。这种编码方法可以在一定程度上保留类别特征的信息,并且通常能够提供比独热编码更紧凑的表示。
对于高基数定性特征(类别特征)的数据预处理,均值编码是一种有效的编码方式。在实际应用中,这类特征工程能极大提升模型的性能。
应用场景
均值编码在以下应用场景中较为常见:
- 分类问题:在分类问题中,均值编码可以将类别特征转换为相应的均值,从而为每个类别赋予一个独特的编码值。这种编码方法可以保留类别特征的信息,并且通常能够提供比独热编码更紧凑的表示。
- 回归问题:在回归问题中,均值编码可以将类别特征转换为相应的均值,以帮助模型更好地理解类别特征与目标变量之间的关系。通过使用均值编码,回归模型可以更好地处理类别特征,并提高预测的准确性。
- 文本分类:在文本分类中,均值编码可以用于将文本中的词语或短语转换为相应的均值,以帮助模型更好地理解文本内容。通过使用均值编码,文本分类模型可以更好地处理文本数据,并提高分类的准确性。
- 图像分类:在图像分类中,均值编码可以用于将图像中的特征转换为相应的均值,以帮助模型更好地理解图像内容。通过使用均值编码,图像分类模型可以更好地处理图像数据,并提高分类的准确性。
需要注意的是,均值编码仅适用于高基数定性特征的数据预处理。对于连续型特征或低基数定性特征,均值编码可能并不适用。在选择合适的编码方法时,应根据具体的数据类型和应用场景进行评估和选择。
案例
# importing libraries
import pandas as pd # creating dataset
data={'SubjectName':['s1','s2','s3','s1','s4','s3','s2','s1','s2','s4','s1'], 'Target':[1,0,1,1,1,0,0,1,1,1,0]} df = pd.DataFrame(data) print(df)
输出
SubjectName Target
0 s1 1
1 s2 0
2 s3 1
3 s1 1
4 s4 1
5 s3 0
6 s2 0
7 s1 1
8 s2 1
9 s4 1
10 s1 0
统计SubjectName的数据计数
df.groupby(['SubjectName'])['Target'].count()
输出
subjectNames1 4s2 3s3 2s4 2
Name: Target, dtype: int64
具有SubjectName的groupby数据及其Target平均值
df.groupby(['SubjectName'])['Target'].mean()
输出
subjectName
s1 0.750000
s2 0.333333
s3 0.500000
s4 1.000000
Name: Target, dtype: float64
通过map对象映射均值到df[‘SubjectName’]
Mean_encoded_subject = df.groupby(['SubjectName'])['Target'].mean().to_dict() df['SubjectName'] = df['SubjectName'].map(Mean_encoded_subject) print(df)
输出
SubjectName Target
0 0.750000 1
1 0.333333 0
2 0.500000 1
3 0.750000 1
4 1.000000 1
5 0.500000 0
6 0.333333 0
7 0.750000 1
8 0.333333 1
9 1.000000 1
10 0.750000 0
均值编码的优缺点
均值编码是一种将类别特征转换为相应均值的编码方法。以下是均值编码的优缺点:
优点:
- 适用于高基数定性特征的数据预处理,能够保留类别特征的信息,提供更紧凑的表示。
- 可以提高分类和回归模型的性能,尤其是在处理类别特征时。
- 可以减少模型过拟合的风险,因为它可以减少特征的维度。
缺点:
- 对于低基数定性特征,均值编码可能并不适用,因为它可能会忽略类别特征中的重要信息。
- 在处理具有不同类别的特征时,均值编码可能会引入偏差,因为它将每个类别视为独立的变量。
- 当类别特征的值非常不平衡时,均值编码可能会产生偏差,导致模型性能下降。
- 在某些情况下,均值编码可能会引入额外的计算开销,尤其是在处理大规模数据集时。
需要注意的是,在选择编码方法时,应根据具体的数据类型、应用场景和模型需求进行评估和选择。除了均值编码外,还有其他的编码方法可供选择,如独热编码、目标编码等。每种编码方法都有其优缺点,应根据具体情况进行选择。
相关文章:
Python | 使用均值编码(MeanEncoding)处理分类特征
在特征工程中,将分类特征转换为数字特征的任务称为编码。 有多种方法来处理分类特征,如OneHotEncoding和LabelEncoding,FrequencyEncoding或通过其计数替换分类特征。同样,我们可以使用均值编码(MeanEncoding)。 均值编码 均值…...
面试-java异常体系
1.java异常体系 error类是指与jvm相关的问题。如系统崩溃,虚拟机错误,内存空间不足。 非runtime异常不处理,程序就没有办法执行。 一旦遇到异常抛出,后面的异常就不会进行。 (1)常见的error以及exception 2.java异常要点分析…...
Clickhouse 的性能优化实践总结
文章目录 前言性能优化的原则数据结构优化内存优化磁盘优化网络优化CPU优化查询优化数据迁移优化 前言 ClickHouse是一个性能很强的OLAP数据库,性能强是建立在专业运维之上的,需要专业运维人员依据不同的业务需求对ClickHouse进行有针对性的优化。同一批…...
变工况下转子、轴承数据采集及测试
1.固定工况下的数据采集 1.wireshark抓包 通过使用 Wireshark 抓包和 Linux 端口重放技术,可以模拟实际机械设备的运行环境,从而减少实地验证软件和算法的复杂性和麻烦。 打开设备正常运转,当采集器通过网口将数据发送到电脑时,…...
泰迪智能科技与成都文理学院人工智能与大数据学院开展校企合作交流
近日,在推动高等教育与产业深度融合的背景下,成都文理学院人工智能与大数据学院携手广东泰迪智能科技股份有限公司开展“专业建设交流会”。人工智能与大数据学院院长胡念青、院长助理陈坚、骨干教师刘超超、孙沛、赵杰、文运、胡斌、邹杰出席本次交流会…...
ubuntu22.04安装初始化
目录 1. 概述2. 修改参数3. 修改限制4. 修改源6. 虚拟机关闭swap分区7. 配置系统信息7.1 设置主机名7.2 设置时区7.3 安装常用工具包7.4 设置时间同步7.5 关闭 selinux 1. 概述 CentOS 7 马上就停止支持服务了,未雨绸缪,整理Ubuntu 22.04的 初始化脚本。…...
学习新语言方法总结(一)
随着工作时间越长,单一语言越来越难找工作了,需要不停地学习新语言来适应,总结一下自己学习新语言的方法,这次以GO为例,原来主语言是PHP ,自学GO 了解语言特性,知道他是干嘛的 go语言࿰…...
Mysql数据的备份与恢复
一.备份概述 备份的主要目的是灾难恢复,备份还可以测试应用、回滚数据修改、查询历史数据、审计等。 1.数据备份的重要性 在企业中数据的价值至关重要,数据保障了企业业务的正常运行。因此,数据的安全性及数据的可靠性是运维的重中之重&…...
规上!西安市支持培育商贸企业达限纳统应统尽统申报奖励补助要求政策
西安市支持培育商贸企业达限纳统应统尽统工作方案 为加快培育消费市场主体,支持商贸企业扩大经营、做大做强,指导企业达限纳统、应统尽统,不断扩大我市限额以上商贸企业数量规模,促进全市经济社会高质量发展,结合我市…...
Go语言测试第二弹——基准测试
在前一篇文章中,我们讲解了Go语言中最基础的单元测试,还没有看过的可以自行去查看,这篇文章我们详细了解Go语言里面的基准测试。 基准测试 基准测试,也就是BenchmarkTest,基准测试是用来测试代码性能的的一种方法&…...
关于“刘亦菲为什么无人敢娶”的问题❗❗❗
关于“刘亦菲为什么无人敢娶”的问题, 实际上涉及到多个方面的因素, 以下是对这些因素的详细分析:1.事业心重:刘亦菲作为华语影视圈的知名女星,她的演艺事业非常成功, 这也意味着她将大量的时间和精力投…...
LeetCode:经典题之141、142 题解及延伸
系列目录 88.合并两个有序数组 52.螺旋数组 567.字符串的排列 643.子数组最大平均数 150.逆波兰表达式 61.旋转链表 160.相交链表 83.删除排序链表中的重复元素 389.找不同 1491.去掉最低工资和最高工资后的工资平均值 896.单调序列 206.反转链表 92.反转链表II 141.环形链表 …...
rk3568 OpenHarmony 串口uart与电脑通讯开发案例
一、需求描述: rk3568开发板运行OpenHarmony4.0,通过开发板上的uart串口与电脑进行通讯,相互收发字符串。 二、案例展示 1、开发环境: (1)rk3568开发板 (2)系统:OpenHar…...
canvas画布旋转问题
先说一下为什么要旋转的目的:因为在画布上签名,在不同的设备上我需要不同方向的签名图片,电脑是横屏,手机就是竖屏,所以需要把手机的签名旋转270,因此写了这个方法。 关于画布旋转的重点就是获取到你的画布…...
vue3 【提效】自动导入框架方法 unplugin-auto-import 实用教程
是否还在为每次都需要导入框架方法而烦恼呢? // 每次都需手动导入框架方法 import { ref } from vuelet num ref(0)用 unplugin-auto-import 来帮你吧,以后只需这样写就行啦! let num ref(0)官方示例如下图 使用流程 1. 安装 unplugin-au…...
clip系列改进Lseg、 group ViT、ViLD、Glip
Lseg 在clip后面加一个分割head,然后用分割数据集有监督训练。textencoder使用clip,frozen住。 group ViT 与Lseg不同,借鉴了clip做了真正的无监督学习。 具体的通过group block来做的。使用学习的N个group token(可以理解为聚类…...
Ubuntu下TensorRT与trtexec工具的安装
新版(这里测试的是10.1版)的onnx转tensorrt engine工具trtexec已经集成在TensorRT中,不需要额外单独安装。 教程来源于此网页:https://medium.com/moshiur.faisal01/install-tensorrt-with-command-line-wrapper-trtexec-on-unun…...
MySQL定时任务
事件调度器操作 查看事件调度器是否开启:ON 表示已开启。 show variables like %event_scheduler%; ------------------------ | Variable_name | Value | ------------------------ | event_scheduler | ON | ------------------------ 开启和关闭事件调度器…...
Pandas实用Excel数据汇总
Pandas 是一个开源的 Python 库,由 Wes McKinney 开发,专门用于高效地处理和分析数据,无论是小规模的数据实验还是大规模的数据处理任务。它构建在 NumPy 之上,这意味着它利用了 NumPy 的高性能数组计算能力。Pandas 的核心数据结…...
【计算机网络】[第4章 网络层][自用]
1 概述 (1)因特网使用的TCP/IP协议体系(四层)的网际层,提供的是无连接、不可靠的数据报服务; (2)ATM、帧中继、X.25的OSI体系(七层)中的网络层,提供的是面向连接的、可靠的虚电路服务。 (3)路由选择分两种: 一种是由用户or管理员人工进行配置(只适用于规…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
