当前位置: 首页 > news >正文

基于matlab的不同边缘检测算子的边缘检测

1 原理

1.1 边缘检测概述

边缘检测是图像处理和计算机视觉中的基本问题,其目的在于标识数字图像中亮度变化明显的点。这些变化通常反映了图像属性的重要事件和变化,如深度不连续、表面方向不连续、物质属性变化和场景照明变化等。边缘检测在特征提取中起着关键作用,因为它能够大幅度地减少数据量,并剔除不相关的信息,同时保留图像重要的结构属性。

1.2 Prewitt算子

Prewitt算子是一种一阶微分算子的边缘检测。它利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

公式表示:
对于数字图像f(x,y),Prewitt算子的定义如下:
G(i) = | [f(i-1,j-1) + f(i-1,j) + f(i-1,j+1)] - [f(i+1,j-1) + f(i+1,j) + f(i+1,j+1)] |
G(j) = | [f(i-1,j+1) + f(i,j+1) + f(i+1,j+1)] - [f(i-1,j-1) + f(i,j-1) + f(i+1,j-1)] |

1.3 Roberts算子

Roberts算子由Lawrence Roberts在1963年提出,基于离散微分的原理,通过计算图像上相邻像素点之间的差异来检测边缘。它使用两个2x2的模板进行卷积操作。

模板表示:
Gx = [[1, 0], [0, -1]]
Gy = [[0, 1], [-1, 0]]

1.4 Sobel算子

Sobel算子是一种一阶导数的边缘检测算子,在算法实现过程中,通过3×3模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。

公式表示:
Sx = (Z1 + 2Z2 + Z3) - (Z7 + 2Z8 + Z9)
Sy = (Z1 + 2Z4 + Z7) - (Z3 + 2Z6 + Z9)

1.5 LoG(Laplacian of Gaussian)算子

LoG算子结合了高斯平滑和拉普拉斯算子。首先使用高斯滤波器对图像进行平滑处理,然后利用拉普拉斯算子进行边缘检测。这样可以减少噪声对边缘检测的影响。

高斯平滑公式(见参考文章7的高斯滤波公式)
LoG算子公式(见参考文章6的LoG函数表达式)

1.6 Canny边缘检测算法

Canny边缘检测算法是一个多级检测算法,结合了高斯滤波、梯度的强度和方向、双阈值处理和边缘跟踪等技术。其目标是找到一个最优的边缘检测算法。

由于Canny边缘检测算法涉及多个步骤和复杂的计算,其完整的公式和算法流程较为复杂,无法在此处直接给出。但基本思想是利用高斯滤波平滑图像,计算梯度的强度和方向,然后通过双阈值处理和边缘跟踪来确定边缘。

以上即为边缘检测及其常见算子的简要介绍和原理公式。在实际应用中,可以根据具体需求和图像特性选择合适的边缘检测算法。

2 代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%% 图像预处理-高斯滤波与图像去噪 
I = imread('test.jpeg');  
if size(I, 3) == 3  % 如果是彩色图像,转换为灰度图像  I = rgb2gray(I);  
end  
I = im2double(I); % 将图像转换为双精度,范围在[0, 1]    
% 对图像进行高斯滤波  
h = fspecial('gaussian', [5 5], 1); % 创建一个5x5的高斯滤波器,标准差为1  
I_gaussian = imfilter(I, h);    
% 绘制原始图像和原始直方图  
figure;  
subplot(3, 2, 1),imshow(I);  
title('原始图像');   
subplot(3, 2, 2),imhist(I);  
title('原始直方图');  
%  绘制高斯滤波后的图像和对应的直方图  
subplot(3, 2, 3),imshow(I_gaussian);  
title('高斯滤波后的图像');  
subplot(3, 2, 4),imhist(I_gaussian);  
title('高斯滤波后的直方图');   
% 去噪使用中值滤波  
I_denoised = medfilt2(I); % 使用中值滤波进行去噪    
% 绘制去噪后的图像和对应的直方图  
subplot(3, 2, 5),imshow(I_denoised);  
title('去噪后的图像');  
subplot(3, 2, 6),imhist(I_denoised);  
title('去噪后的直方图');  
%% %% 边缘检测
% 读取图像  
I6 = imread('test.jpeg'); 
I6 = rgb2gray(I6); % 转换为灰度图像   
% 初始化figure和subplot  
figure;  
% 绘制原始图像作为对比  
subplot(3, 2, 1);  
imshow(I6);  
title('原始图像');    
% Prewitt边缘检测  
BW_prewitt = edge(I6, 'prewitt');  
subplot(3, 2, 2);  
imshow(BW_prewitt);  
title('Prewitt 边缘检测');    
% Roberts边缘检测  
BW_roberts = edge(I6, 'roberts');  
subplot(3, 2, 3);  
imshow(BW_roberts);  
title('Roberts 边缘检测');  
% Sobel边缘检测  
BW_sobel = edge(I6, 'sobel');  
subplot(3, 2, 4);  
imshow(BW_sobel);  
title('Sobel 边缘检测');   
% LoG边缘检测  
BW_log = edge(I6, 'log');  
subplot(3, 2, 5);  
imshow(BW_log);  
title('LoG 边缘检测');   
% Canny边缘检测(需要设置阈值)  
BW_canny = edge(I6, 'canny', [0.4, 0.7]); % 这里设置了高低两个阈值  
subplot(3, 2, 6);  
imshow(BW_canny);  
title('Canny 边缘检测');  
% 添加标签和标题  
set(gcf, 'Name', '边缘检测算子比较');
%% 图像预处理-灰度化与图像反白
I1 = imread('test.jpeg');  
figure;
subplot(2,2,1);%用subplot建立多个子图
imshow(I1);%用imshow显示图像I
title('原始彩色图像');  
J=rgb2gray(I1);%将彩色图像工转换为灰度图像J
subplot(2,2,2);imshow(J);% 用imshow显示图像J
title('灰度图像');  
subplot(2,2,3);imhist(J);% 计算和显示灰度图像J的灰度直方图
title('灰度直方图');  
Ave = mean2(J);%用mean2函数求图像J的均值
SD = std2(double(J));%用std2函数求图像J的均值
s= size(J);%图像大小为s(1)×s(2)
all_white = 255*ones(s(1),s(2));%设置全部为白色灰度255
all_white_uint8=uint8(all_white);%将double类型矩阵转化为uint8类型矩阵
K= imsubtract(all_white_uint8,J);%图像相减得反白图像K
subplot(2,2,4);imshow(K);%用imshow显示图像K
title('反白图像');  %% 线性变换进行图像增强
I2= imread('test.jpeg');
J2=rgb2gray(I2);
figure;
subplot(2,2,1), imshow(J2) ;
title('原始图像');  
subplot(2,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图');  
K = imadjust(J2,[0.4 0.6],[]);%使用imadjust函数进行灰度的线性变换
subplot(2,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(2,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');%% 伽马变换进行图像增强
figure;
subplot(3,2,1), imshow(J2) ;
title('原始图像');  
subplot(3,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图'); 
gamma = 0.5;
I_gamma = imadjust(J2, [], [], gamma);  
subplot(3,2,3),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(3,2,4),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
%% % 对数变换进行图像增强  
c = 0.5; % 控制参数,用于避免log(0)  
I_log = c * log(1 + double(J2)) / log(256);  
I_log = im2uint8(I_log);    
subplot(3,2,5);  
imshow(I_log);  
title('对数变换后的图像');
subplot(3,2,6);  
imhist(I_log);
title('对数变换后的灰度直方图');
%% 
figure('Position',[50 50 800 600])
subplot(4,2,1), imshow(J2);
title('原始图像');  
subplot(4,2,2), imhist(J2);
title('原始灰度直方图'); 
subplot(4,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(4,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');
subplot(4,2,5),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(4,2,6),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
subplot(4,2,7),imshow(I_log);  
title('对数变换后的图像');
subplot(4,2,8),imhist(I_log);
title('对数变换后的灰度直方图');
%% 直方图均衡化进行图像增强
I3 = imread('test.jpeg'); % 读取图像  
I_gray = rgb2gray(I3); % 转换为灰度图像    
% 直方图均衡化  
I_eq = histeq(I_gray);    
% 显示原始图像和增强后的图像  
figure;
subplot(2, 2, 1),imshow(I_gray);
title('原始图像'); 
subplot(2, 2, 2);  
imhist(I_gray),title('原始灰度直方图'); 
subplot(2, 2, 3),imshow(I_eq);  
title('直方图均衡化后的图像');
subplot(2, 2, 4),imhist(I_eq);  
title('直方图均衡化后的灰度直方图');

3 运行结果

相关文章:

基于matlab的不同边缘检测算子的边缘检测

1 原理 1.1 边缘检测概述 边缘检测是图像处理和计算机视觉中的基本问题,其目的在于标识数字图像中亮度变化明显的点。这些变化通常反映了图像属性的重要事件和变化,如深度不连续、表面方向不连续、物质属性变化和场景照明变化等。边缘检测在特征提取中…...

CentOS安装ntp时间同步服务

CentOS安装ntp时间同步服务 安装ntp 检查服务器是否安装ntp: rpm -q ntp安装ntp: yum install -y ntp服务端配置 配置文件路径:/etc/ntp.conf 设置ntp为开机启动 systemctl enable ntpd查看ntp开机启动状态 enabled:开启, disabled:关闭 …...

【Linux进阶】UNIX体系结构分解——操作系统,内核,shell

1.什么是操作系统? 从严格意义上说,可将操作系统定义为一种软件,它控制计算机硬件资源,提供程序运行环境。我们通常将这种软件称为内核(kerel),因为它相对较小,而且位于环境的核心。 从广义上…...

PageOffice国产版在线编辑word文件

PageOffice国产版支持统信UOS、银河麒麟等国产操作系统。调用客户端WPS在线编辑word、excel、ppt等文件。在线编辑效果与本地WPS一致。如图所示: web系统集成pageofficeV6.0国产版的文档:PageOfficeV6.0国产版最简集成代码(Springboot) PageOffice最简集…...

Bitmap位图数据排列方式

读取dicom C# 使用fo-dicom操作dicom文件-CSDN博客 创建位图 通过读取dicom得到像素内存,本例单指彩色图像。 Bitmap dataBmp new Bitmap(imageWidth, imageHeight, stride, PixelFormat.Format24bppRgb, dstBmp); 当像素的内存按照RGB的排列模式时&#xff0c…...

重磅消息:ONLYOFFICE8.1版本桌面编辑器发布:功能完善的 PDF 编辑器、幻灯片版式、改进从右至左显示、新的本地化选项等

目录 ONLYOFFICE介绍 PDF 编辑器 功能全面的 PDF 编辑器 文本编辑 页面处理 (添加、旋转、删除) 插入和调整各种对象,例如表格、形状、文本框、图像、TextArt、超链接、方程等。 此外 PDF 表单 文本文档编辑器更新内容 页面颜色 页面…...

16进制数按位修改

16进制数需要按位修改,特别是在修改寄存器的时候 16进制数转换为2进制 #16进制数转换为2进制 def hex_to_binary(hex_value):return bin((hex_value))二进制数转换为列表 def bin_to_array(bin_str):integer = int(bin_str, 2)array...

深度神经网络——什么是小样本学习?

引言 小样本学习是指使用极少量的训练数据来开发人工智能模型的各种算法和技术。小样本学习致力于让人工智能模型在接触相对较少的训练实例后识别和分类新数据。小样本训练与训练机器学习模型的传统方法形成鲜明对比,传统方法通常使用大量训练数据。小样本学习是 主…...

送物机器人电子方案定制

这是一款集娱乐、教育和互动于一身的高科技产品。 一、它的主要功能包括: 1. 智能对话:机器人可以进行简单的对话,回答用户的问题,提供有趣的互动体验。 2. 前进、后退、左转、右转、滑行:机器人可以通过遥控器或AP…...

chatgpt: linux 下用纯c 编写一按钮,当按钮按下在一新窗口显示本机主目录下图片子目录中的1.jpg图片

tmd,这chatgpt太强大了。 从下面的c程序与python程序对比,纯c的ui编程也不是太复杂。 再说一次,要想学好编程必须要用上这个chatgpt工具。 在 Linux 环境下使用纯 C 语言编写一个按钮,当按钮按下时,在一个新窗口中显示本机主目…...

SherlockChain:基于高级AI实现的智能合约安全分析框架

关于SherlockChain SherlockChain是一款功能强大的智能合约安全分析框架,该工具整合了Slither工具(一款针对智能合约的安全工具)的功能,并引入了高级人工智能模型,旨在辅助广大研究人员针对Solidity、Vyper和Plutus智…...

MySQL中Explain执行计划各参数的含义

EXPLAIN 语句输出的各个列的作用先大致罗列一下: 列名 描述 id 在一个大的查询语句中每个SELECT关键字都对应一个唯一的id select_type SELECT关键字对应的那个查询的类型 table 表名 partitions 匹配的分区信息 type 针对单表的访问方法 possible_keys…...

Redis队列自研组件

背景 年初的时候设计实践过一个课题:SpringBootRedis实现不重复消费的队列,并用它开发了一个年夜饭下单和制作的服务。不知道大家还有没有印象。完成这个课题后,我兴致勃勃的把它运用到了项目里面,可谁曾想,运行不久后…...

ArchLinux挑战安装(ZFS、Wayland、KDE、xero)

目录 0. 前言: 1. 先期准备 1.1 引导ArchLinx光盘。 1.2 禁用 reflector 服务 1.3 防止网卡禁用 1.4 wifi设置 1.5 测试网络是否连接 1.6 更新系统时间 1.7 更换源 1.8 下载ZFS模块 1.9 加载ZFS模块 2. 磁盘处理 2.1 查看磁盘分区 2.2 清除与整个磁盘…...

纯css写一个动态圣诞老人

效果预览 在这篇文章中,我们将学习如何使用CSS来创建一个生动的圣诞老人动画。通过CSS的魔力,我们可以让圣诞老人在网页上摇摆,仿佛在向我们招手庆祝圣诞节和新年。 实现思路 实现这个效果的关键在于CSS的keyframes动画规则以及各种CSS属性…...

百度Apollo的PublicRoadPlanner一些移植Ros2-foxy的思路(持续更新)

如今的PublicRoadPlanner就是之前耳熟能详的EM planner 计划 —— ROS2与CARLA联合仿真 结构化场景: 规划算法:EM-planner 控制算法:MPC和PID 非结构化场景: 规划算法采用Hybrid A* (1)小车模型搭建(计划参考Github上Hybrid上的黑车,比较炫酷) (2)车辆里程计: 位…...

Linux内存管理(七十三):cgroup v2 简介

版本基于: Linux-6.6 约定: 芯片架构:ARM64内存架构:UMACONFIG_ARM64_VA_BITS:39CONFIG_ARM64_PAGE_SHIFT:12CONFIG_PGTABLE_LEVELS :31. cgroup 简介 术语: cgroup:control group 的缩写,永不大写(never capitalized); 单数形式的 cgroup 用于指定整个特性,也用…...

c++习题01-ljc的暑期兼职

目录 一,题目描述 二,思路 三,伪代码 四,流程图 五,代码 一,题目描述 二,思路 1,根据题目要求需要声明4个变量:a,b,c,d ;牛奶价格a,活动要求b&…...

有哪些方法可以恢复ios15不小心删除的照片?

ios15怎么恢复删除的照片?在手机相册里意外删除了重要的照片?别担心!本文将为你介绍如何在iOS 15系统中恢复已删除的照片。无需专业知识,只需要按照以下步骤操作,你就能轻松找回宝贵的回忆。 一、从iCloud云端恢复删除…...

nacos漏洞汇总

1 nacos介绍 1.1 nacos是啥 Alibaba Nacos是阿里巴巴推出来的一个新开源项目,是一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。致力于帮助发现、配置和管理微服务。Nacos提供了一组简单易用的特性集,可以快速实现动态服务发现、服…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

LLMs 系列实操科普(1)

写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...