当前位置: 首页 > news >正文

【图像分类】Yolov8 完整教程 |分类 |计算机视觉

目标:用YOLOV8进行图像分类。

图像分类器。

学习资源:https://www.youtube.com/watch?v=Z-65nqxUdl4

@努力的小巴掌 记录计算机视觉学习道路上的所思所得。

1、文件结构化

划分数据集:train,val,test

知道怎么划分数据集很重要。

文件夹下面有不同类别的图片。

train 

     -----dog

     -----cat

val 

     -----dog

     -----cat

test

     -----dog

     -----cat

    

2、YOLOV8做图片分类任务

方法1:

在python写脚本

首先,确保自己已经安装了ultralytics和numpy。

可以直接创建requirements.txt文件,写上这个:

ultralytics==8.0.58

numpy==1.24.2

然后pip install requirements.txt

参考官网给的文档:

Classify - Ultralytics YOLO Docs

创建main.py

from ultralytics import YOLO

# Load a model
# model = YOLO("yolov8n-cls.yaml")  # build a new model from YAML
model = YOLO("yolov8n-cls.pt")  # load a pretrained model (recommended for training)
# model = YOLO("yolov8n-cls.yaml").load("yolov8n-cls.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="数据集的的绝对路径", epochs=1, imgsz=64)

在本地运行时候,只是为了看看train.py能不能正常运行,所以,epocha设置成1;

data="数据集的的绝对路径",这里是放所有图片的那个总文件夹,就是train/val/test上面一级的,然后注意一定是绝对路径。

方法2

命令行

yolo classify train data='绝对路径' model=yolov8n-cls.pt epochs=1 imgsz=64

3、查看结果

结果保存在runs/classify下

4、分析结果

结果有3个,

weights:best.pt和last.pt 模型文件

args.yaml: 类似于配置文件,列出了我们训练时候的所有参数

results.csv:所有epochs的训练结果

其中我们重点关注,loss和accuracy。

我们要保证其损失是一直下降的。

数字不好看,我们用每个epoch的loss值画一个图像,可以直观的看。

创建画图脚本plot_metrics.py

代码:

import os
import pandas as pd
import matplotlib.pyplot as pltresults_path = './runs/classify/train14/results.csv'results = pd.read_csv(results_path)plt.figure()
plt.plot(results['                  epoch'], results['             train/loss'], label='train loss')
plt.plot(results['                  epoch'], results['               val/loss'], label='val loss', c='red')
plt.grid()
plt.title('Loss vs epochs')
plt.ylabel('loss')
plt.xlabel('epochs')
plt.legend()plt.figure()
plt.plot(results['                  epoch'], results['  metrics/accuracy_top1'] * 100)
plt.grid()
plt.title('Validation accuracy vs epochs')
plt.ylabel('accuracy (%)')
plt.xlabel('epochs')plt.show()

结果类似于:
 

5、预测新图片

创建predict.py

from ultralytics import YOLO

# Load a model

model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("图片位置")  # predict on an image

names_dict = results[0].names

probs = results[0].probs.tolist()

print(names_dict)

print(probs)

print(names_dict[np.argmax(probs)])

computervisioneng (Computer vision engineer) · GitHub

相关文章:

【图像分类】Yolov8 完整教程 |分类 |计算机视觉

目标:用YOLOV8进行图像分类。 图像分类器。 学习资源:https://www.youtube.com/watch?vZ-65nqxUdl4 努力的小巴掌 记录计算机视觉学习道路上的所思所得。 1、文件结构化 划分数据集:train,val,test 知道怎么划分数据集很重要。 文件夹…...

PyCharm 2024.1最新变化

PyCharm 2024.1 版本带来了一系列激动人心的新功能和改进,以下是一些主要的更新亮点: Hugging Face 模型和数据集文档预览:在 PyCharm 内部快速获取 Hugging Face 模型或数据集的详细信息,通过鼠标悬停或使用 F1 键打开文档工具窗口来预览。 …...

金融行业专题|某头部期货基于 K8s 原生存储构建自服务数据库云平台

为了进一步提升资源交付效率,不少用户都将数据库应用从物理环境迁移到容器环境。而对于 Kubernetes 部署环境,用户不仅需要考虑数据库在性能方面的需求,还要为数据存储提供更安全、可靠的高可用保障。 近期,某头部期货机构基于 S…...

DELL服务器 OpenManage监控指标解读

监控易是一款专业的IT基础设施监控软件,通过SNMP等多种方式,实时监控服务器、网络设备等IT资源的各项性能指标。对于DELL服务器 OpenManage,监控易提供了全面的监控解决方案,确保服务器的稳定运行。 一、网络连通性监控&#xff…...

vscode下无法识别node、npm的问题

node : 无法将“node”项识别为 cmdlet、函数、脚本文件或可运行程序的名称 因为node是在cmd安装的,是全局安装的,并不是在这个项目里安装的。 解决方案: 1.在vscode的控制台,针对一个项目安装特定版本的node; 2.已经…...

C语言之字符串处理函数

文章目录 1 字符串处理函数1.1 输入输出1.1.1 输出函数puts1.1.2 输入函数gets 1.2 连接函数1.2.1 stract1.2.2 strncat 1.3 复制1.3.1 复制strcpy1.3.2 复制strncpy1.3.3 复制memcpy1.3.4 指定复制memmove1.3.5 指定复制memset1.3.6 新建复制strdup1.3.7 字符串设定strset 1.4…...

昇思25天学习打卡营第4天|onereal

今天学习的内容是:ResNet50迁移学习 以下内容拷贝至教程,实话实话看不懂,迷迷糊糊都运行jupyter里的代码。走完程序,训练生成了一些图片。 ResNet50迁移学习 在实际应用场景中,由于训练数据集不足,所以很少…...

restTemplate使用总结

1、配置类 Configuration public class RestTemplateConfig() {Beanpublic RestTemplate restTemplate(ClientHttpRequestFactory factory) {return new RestTemplate(factory);}Beanpublic ClientHttpRequestFactory simpleClientHttpRequestFactory() {HttpComponentsClient…...

【云服务器介绍】选择指南 腾讯云 阿里云全配置对比 搭建web 个人开发 app 游戏服务器

​省流目录:适用于博客建站(2-4G)、个人开发/小型游戏[传奇/我的世界/饥荒](4-8G)、数据分析/大型游戏[幻兽帕鲁/雾锁王国]服务器(16-64G) 1.京东云-618专属活动 官方采购季专属活动地址&#x…...

PostgreSQL 高级SQL查询(三)

1. JOIN 操作 1.1 内连接(INNER JOIN) 内连接用于返回两个表中存在匹配关系的记录。基本语法如下: SELECT columns FROM table1 INNER JOIN table2 ON table1.column table2.column;例如,从 users 表和 orders 表中检索所有用…...

麒麟系统安装Redis

一、背景 如前文(《麒麟系统安装MySQL》)所述。 二、下载Redis源码 官方未提供麒麟系统的Redis软件,须下载源码编译。 下载地址:https://redis.io/downloads 6.2.14版本源码下载地址:https://download.redis.io/re…...

Java-方法引用

方法引用概念 把已经有的方法拿过来用,当做函数式接口中抽象方法的方法体 前提条件 1、引用处必须是函数式接口 2、被引用的方法必须已经存在 3、被引用方法的形参和返回值 需要跟抽象方法保持一致 4、被引用方法的功能要满足当前需求 方法引用格式示例 方…...

华为---配置基本的访问控制列表(ACL)

11、访问控制列表(ACL) 11.1 配置基本的访问控制列表 11.1.1 原理概述 访问控制列表ACL(Access Control List)是由permit或deny语句组成的一系列有顺序的规则集合,这些规则根据数据包的源地址、目的地址、源端口、目的端口等信息来描述。A…...

Apple Intelligence,我们能得到什么?(上)

苹果公司WWDC 2024发布会,苹果AI成为最吸睛的焦点。不过,苹果的AI不是大家口中的AI,而是苹果独有的概念:Apple Intelligence,苹果智能。 所谓Apple Intelligence,被定义为iPhone、iPad和Mac的个人智能系统…...

【数据库中的存储桶】

存储桶是对象存储系统中的一个核心概念,起源于Amazon S3(Simple Storage Service)并被其他对象存储解决方案(如MinIO、Google Cloud Storage等)广泛采用。在传统的文件系统中,我们通常使用目录和子目录来组…...

多选项卡的shiny

下面是一个包含多个选项卡的 Shiny 应用程序示例代码。在这个例子中&#xff0c;我们创建了一个包含三个选项卡的 Shiny 应用程序&#xff0c;每个选项卡中都有不同的内容。 library(shiny)# Define UI ui <- fluidPage(titlePanel("多选项卡 Shiny 应用"),tabse…...

Python项目Django框架发布相关

1.Nginx配置 server { listen 80; server_name 域名地址;location / { uwsgi_pass 0.0.0.0:4563;// 运行地址include uwsgi_params;} location /static{ // 静态文件路径alias /www/wwwroot/djserverproject/static;}}server { listen 443; server_name 域名地址;ssl_certific…...

kettle使用手册 安装9.0版本 建议设置为英语

0.新建转换的常用组件 0. Generate rows 定义一个字符串 name value就是字符串的值 0.1 String operations 字段转大写 去空格 1. Json input 来源于一个json文件 1.json 或mq接收到的data内容是json字符串 2. Json output 定义Jsonbloc值为 data, 左侧Fieldname是数据库…...

golang string、byte[]以及rune的基本概念,用法以及区别

在 Go 语言中&#xff0c;string、byte[] 和 rune 是处理文本和字符的三种不同数据类型。它们有各自的用途和特点&#xff0c;下面将详细介绍它们的基本概念、用法以及区别。 1. string 基本概念 字符串类型&#xff1a;string 是 Go 语言中的一种基本类型&#xff0c;用于表…...

全国211大学名单及排名

序号 名称 省份 985 211 双一流 1 北京大学 北京 是 是 是 2 清华大学 北京 是 是 是 3 复旦大学 上海 是 是 是 4 上海交通大学 上海 是 是 是 5 浙江大学 浙江 是 是 是 6 国防科技大学 湖南 是 是 是 7 中国人民大学 北京 是 …...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...