当前位置: 首页 > news >正文

python 识别图片点击,设置坐标,离设置坐标越近的优先识别点击

import pyautogui
import cv2
import numpy as np
import mathdef find_and_click(template_path, target_x, target_y, match_threshold=0.8):"""在屏幕上查找目标图片并点击。Args:template_path: 目标图片的路径。target_x: 预设的坐标 x 轴值。target_y: 预设的坐标 y 轴值。match_threshold: 匹配阈值,默认值为 0.8。Returns:如果找到目标图片,则返回 True,否则返回 False。"""# 加载目标图片template = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)# 获取屏幕截图screenshot = pyautogui.screenshot()screenshot = np.array(screenshot)screenshot = cv2.cvtColor(screenshot, cv2.COLOR_BGR2GRAY)# 使用模板匹配查找目标图片result = cv2.matchTemplate(screenshot, template, cv2.TM_CCOEFF_NORMED)# 获取匹配结果match_locations = np.where(result >= match_threshold)# 如果找到匹配结果if len(match_locations[0]) > 0:# 获取匹配结果的中心坐标match_x = match_locations[1][0]match_y = match_locations[0][0]# 计算匹配结果与预设坐标的距离distance = math.sqrt((match_x - target_x)**2 + (match_y - target_y)**2)# 如果有多个匹配结果,则选择距离最近的进行点击if len(match_locations[0]) > 1:for i in range(1, len(match_locations[0])):x = match_locations[1][i]y = match_locations[0][i]new_distance = math.sqrt((x - target_x)**2 + (y - target_y)**2)if new_distance < distance:match_x = xmatch_y = ydistance = new_distance# 点击目标图片pyautogui.click(match_x, match_y)return True# 如果没有找到匹配结果else:return False# 示例代码
if __name__ == "__main__":# 目标图片路径template_path = "4.png"# 预设的坐标target_x = 100target_y = 100# 查找并点击目标图片if find_and_click(template_path, target_x, target_y):print("目标图片已点击!")else:print("未找到目标图片!")

优化代码,输出近似图片的位置坐标

import pyautogui
import cv2
import numpy as np
import mathdef find_and_print_matches(template_path, target_x, target_y, match_threshold=0.8):"""在屏幕上查找目标图片并打印所有匹配结果的位置。Args:template_path: 目标图片的路径。target_x: 预设的坐标 x 轴值。target_y: 预设的坐标 y 轴值。match_threshold: 匹配阈值,默认值为 0.8。"""# 加载目标图片template = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)# 获取屏幕截图screenshot = pyautogui.screenshot()screenshot = np.array(screenshot)screenshot = cv2.cvtColor(screenshot, cv2.COLOR_BGR2GRAY)# 使用模板匹配查找目标图片result = cv2.matchTemplate(screenshot, template, cv2.TM_CCOEFF_NORMED)# 获取匹配结果match_locations = np.where(result >= match_threshold)# 如果找到匹配结果if len(match_locations[0]) > 0:# 打印所有匹配结果的位置print("找到以下匹配结果:")for i in range(len(match_locations[0])):match_x = match_locations[1][i]match_y = match_locations[0][i]distance = math.sqrt((match_x - target_x)**2 + (match_y - target_y)**2)print(f"位置:({match_x}, {match_y}),距离:{distance:.2f}")else:print("未找到匹配结果!")# 示例代码
if __name__ == "__main__":# 目标图片路径template_path = "4.png"# 预设的坐标target_x = 100target_y = 200# 查找并打印匹配结果find_and_print_matches(template_path, target_x, target_y)

相关文章:

python 识别图片点击,设置坐标,离设置坐标越近的优先识别点击

import pyautogui import cv2 import numpy as np import mathdef find_and_click(template_path, target_x, target_y, match_threshold0.8):"""在屏幕上查找目标图片并点击。Args:template_path: 目标图片的路径。target_x: 预设的坐标 x 轴值。target_y: 预设…...

【实战教程】如何使用JMeter来轻松测试WebSocket接口?

1、websocket接口原理 打开网页&#xff1a;从http协议&#xff0c;升级到websocket协议&#xff0c;请求建立websocket连接服务器返回建立成功成功客户端向服务端发送匹配请求服务端选择一个客服上线服务器返回客服id客户端向服务器发送消息服务器推送消息给指定的客服服务器…...

【linux】详解——库

目录 概述 库 库函数 静态库 动态库 制作动静态库 使用动静态库 如何让系统默认找到第三方库 lib和lib64的区别 /和/usr/和/usr/local下lib和lib64的区别 环境变量 配置相关文件 个人主页&#xff1a;东洛的克莱斯韦克-CSDN博客 简介&#xff1a;C站最萌博主 相关…...

RuntimeError: “exp_vml_cpu“ not implemented for ‘Half‘

遇到 "exp_vml_cpu" not implemented for Half 这个运行时错误&#xff0c;意味着你尝试在一个操作中使用了半精度&#xff08;Half 或 float16&#xff09;数据类型&#xff0c;但是该操作在当前环境下并没有针对半精度数据类型的实现。 半精度&#xff08;float16&…...

JVM之双亲委派机制

1.双亲委派机制 在Java中&#xff0c;类加载器具有层次结构。每个Java实现的类加载器中保存了一个成员变量叫“父”类加载器&#xff08;parent&#xff09;&#xff0c;可以理解为上级&#xff0c;并不是继承关系。应用程序类加载器的parent父加载器是扩展类加载器&#xff0…...

Gemalto SafeNet Luna HSM服务器硬件监控指标解读

在现代化的信息安全体系中&#xff0c;硬件安全模块&#xff08;HSM&#xff09;扮演着至关重要的角色&#xff0c;它负责保护和管理敏感的数据和密钥。Gemalto SafeNet Luna HSM作为一款高性能的硬件安全模块&#xff0c;广泛应用于金融、政府和企业等领域。为了确保Luna HSM的…...

计算机视觉与人工智能领域常用期刊和会议缩写

在撰写论文时有时候会面临超篇幅的情况&#xff0c;这时候一个常用的操作便是使用期刊&#xff08;会议&#xff09;的缩写或者半缩写来替换期刊&#xff08;会议&#xff09;全称 为了方便自己后续使用相关的缩写 特此整理 如有不当之处 欢迎大家指正~~ 计算机视觉与人工智能…...

ONLYOFFICE桌面编辑器8.1版:个性化编辑和功能强化的全面升级

ONLYOFFICE是一款全面的办公套件&#xff0c;由Ascensio System SIA开发。该软件提供了一系列与微软Office系列产品相似的办公工具&#xff0c;包括处理文档&#xff08;ONLYOFFICE Document Editor&#xff09;、电子表格&#xff08;ONLYOFFICE Spreadsheet Editor&#xff0…...

用一个实例看如何分享大量照片 续篇二,关于Exif (Exchangeable Image File) - 可交换图像文件

续篇二&#xff1a;说说关于照片隐含的 Exif (Exchangeable Image File) 可交换图像文件 数码照片的Exif 参数有很多&#xff0c;重要的Exif信息&#xff1a;拍摄日期、时间、拍摄器材、GPS信息。 当然这主要对自己的档案有意义&#xff0c;如果放到网上还是建议抹去这些信息。…...

使用Python自动化收集和处理视频资源的教程

在这篇教程中&#xff0c;我们将介绍如何利用Python脚本自动化收集和处理视频资源。这篇文章将帮助您掌握基本的网络自动化技术&#xff0c;并使用相关库进行视频资源的获取和保存。以下是具体的实现步骤和代码示例。 环境准备 在开始之前&#xff0c;请确保您的工作环境中已…...

字节数组输出流转换为Base64方法记录

1. 今天在做字节数组转换Base64的时候遇到一个问题&#xff0c;转换成的Base64字符串自动换行&#xff0c;导致传输失败 关键代码&#xff1a; ByteArrayOutputStream out new ByteArrayOutputStream(); ............. BASE64Encoder encoder new BASE64Encoder(); Stri…...

在eclipse中导入idea项目步骤

一、可以把其它项目的.project&#xff0c; .classpath文件拷贝过来&#xff0c;修改相应的地方则可。 1、.project文件只需要修改<name>xxx</name>这个项目名称则可 2、.classpath文件通常不用改&#xff0c; 二、右击 项目名 >选择“Properties”>选择 Re…...

海思SS928/SD3403开发笔记4——u盘挂载

首先一定要将u盘格式化成fat32。 挂载 mkdir /mnt/usb mount /dev/sda1 /mnt/usb成功示意图&#xff1a; 取消挂载 umount /mnt/usb...

偏微分方程算法之抛物型方程差分格式编程示例六(混合边界条件下C-N格式)

目录 一、研究问题 二、C++代码 三、计算结果 一、研究问题 对于混合边界条件下的抛物型偏微分方程求解,我们使用Crank-Nicolson格式(C-N格式),边界条件采用中心差商,即...

【5G核心网】5G NWDAF(Network Data Analytics Function)网元功能介绍

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G技术研究。 博客内容主要围绕…...

今日思考分享:全网爆火的山东车牌之歌原因是什么?

山东车牌之歌的爆火反映了一种潜在而又浅显的需求被满足的过程。 首先&#xff0c;这首歌击中了人们的“潜”需求。在日常出行中&#xff0c;我们确实会偶尔对看到的不同地区车牌产生好奇&#xff0c;但往往这种好奇心一闪而过&#xff0c;没有具体的途径去满足。而山东车牌之歌…...

Spring Boot 2.x + Mybatis Plus 多数据源配置

MP官方文档提供有多数据源配置方案&#xff0c;这里没有使用其方案&#xff0c;原因是项目不想引入过多依赖 提供一下官网的文档供各位选择多数据源支持 | MyBatis-Plus (baomidou.com) 配置文件 application.properties文件配置两个数据源信息&#xff0c;yaml文件自行修改…...

2、数据库模型图、er图

关系 user和administarators是多对一的关系 user和order是一对多的关系 shipped和order是多对一的关系 order和books是多对多的关系 leavewords和order是一对一的关系 stock和books是一对多的关系 Chens 数据库表示法——ER图 Crows Foot数据库表示法——数据库模型图 Navicat表…...

Docker的理解

Docker的理解 Docker为什么用Docker&#xff1f;1.提升系统资源利用率2.更快速的交付和部署3.高效的部署和扩容4.更简单的管理 Docker核心技术Docker镜像Docker容器Docker仓库 Docker实现原理Linux NamespaceCgroupUnion FS Docker的应用场景1.微服务架构2.持续集成3.快速部署和…...

通信协议总结

IIC 基本特点 同步&#xff0c;半双工 标准100KHz&#xff0c;最高400KHz&#xff08;IIC主要应用于低速设备&#xff09; 硬件组成 需外接上拉电阻 通信过程 空闲状态 SDA和SCL都处于高电平 开始信号S和终止信号P 在数据传输过程中&#xff0c;当SCL0时&#xff0c;SDA才…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...