K近邻回归原理详解及Python代码示例
K近邻回归原理详解
K近邻回归(K-Nearest Neighbors Regression, KNN)是一种基于实例的学习算法,用于解决回归问题。它通过找到输入数据点在特征空间中最相似的K个邻居(即最近的K个数据点),并使用这些邻居的平均值来预测目标值。
目录
K近邻回归原理详解
1. 基本概念
2. 工作原理
3. 优点
4. 缺点
5. 实际应用
Python代码示例
代码解释
1. 基本概念
KNN回归的基本思想是“相似的数据点具有相似的目标值”。它不需要显式的训练过程,而是直接在输入数据上进行预测,因此属于懒惰学习算法(Lazy Learning)。
2. 工作原理
KNN回归的工作流程如下:
- 选择K值:确定用于预测的邻居数量K,这个参数对模型性能有很大影响。
- 计算距离:对于每个待预测的数据点,计算它与训练集中所有数据点的距离。常用的距离度量包括欧氏距离、曼哈顿距离等。
- 找到K个最近邻:根据计算的距离,从训练集中找到K个距离最近的数据点。
- 预测目标值:将这K个最近邻的数据点的目标值进行平均,得到待预测数据点的预测值。
3. 优点
- 简单易懂:KNN回归原理简单,易于实现和理解。
- 无需训练:KNN回归不需要训练过程,因此在数据更新时无需重新训练模型。
- 灵活性高:KNN回归对数据分布没有假设,可以处理非线性数据。
4. 缺点
- 计算开销大:在预测时需要计算所有训练数据点的距离,对于大规模数据集效率较低。
- 存储需求高:需要存储所有训练数据,内存开销大。
- 对噪声敏感:对数据中的噪声和异常值敏感,可能影响预测结果。
- 参数选择困难:K值的选择对模型性能影响较大,需通过交叉验证等方法确定最佳K值。
5. 实际应用
KNN回归在许多实际应用中表现良好,适用于回归、分类以及其他需要基于相似性进行预测的问题,如推荐系统、模式识别等。
Python代码示例
以下是一个完整的Python代码示例,用于实现K近邻回归。我们将使用scikit-learn库来构建和评估模型。
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error# 生成一些示例数据
np.random.seed(0)
x = np.sort(5 * np.random.rand(100, 1), axis=0)
y = np.sin(x).ravel()
y[::5] += 3 * (0.5 - np.random.rand(20)) # 添加噪声# 可视化原始数据
plt.scatter(x, y, s=20, edgecolor="black", c="darkorange", label="data")
plt.title("Original Data")
plt.show()# 数据标准化
scaler = StandardScaler()
x_scaled = scaler.fit_transform(x)# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size=0.2, random_state=42)# 创建K近邻回归模型并进行拟合
knn = KNeighborsRegressor(n_neighbors=5)
knn.fit(x_train, y_train)# 预测结果
y_train_pred = knn.predict(x_train)
y_test_pred = knn.predict(x_test)# 可视化拟合结果
x_test_sorted = np.sort(x_test, axis=0)
y_test_pred_sorted = knn.predict(x_test_sorted)plt.figure()
plt.scatter(x_train, y_train, s=20, edgecolor="black", c="darkorange", label="train data")
plt.scatter(x_test, y_test, s=20, edgecolor="black", c="blue", label="test data")
plt.plot(x_test_sorted, y_test_pred_sorted, color="green", label="predictions", linewidth=2)
plt.title("K-Nearest Neighbors Regression")
plt.legend()
plt.show()# 打印模型参数和均方误差
train_mse = mean_squared_error(y_train, y_train_pred)
test_mse = mean_squared_error(y_test, y_test_pred)
print("Train Mean Squared Error:", train_mse)
print("Test Mean Squared Error:", test_mse)
代码解释
-
数据生成:
- 生成100个随机点,并将这些点排序。
- 使用正弦函数生成目标值,并在部分数据上添加随机噪声以增加数据的复杂性。
-
数据可视化:
- 绘制生成的原始数据点,用散点图表示。
-
数据标准化:
- 使用
StandardScaler对数据进行标准化处理,以使得输入特征具有零均值和单位方差。
- 使用
-
数据划分:
- 将数据划分为训练集和测试集,训练集占80%,测试集占20%。
-
创建K近邻回归模型:
- 使用
KNeighborsRegressor类构建K近邻回归模型,设置参数n_neighbors=5表示选择5个最近邻。
- 使用
-
模型训练:
- 在训练数据上训练K近邻回归模型。
-
结果预测:
- 在训练集和测试集上进行预测,生成预测结果。
-
可视化拟合结果:
- 绘制训练数据、测试数据及模型的预测结果,观察模型的拟合效果。
-
模型评估:
- 计算并打印训练集和测试集的均方误差(MSE),评估模型的拟合性能。
相关文章:
K近邻回归原理详解及Python代码示例
K近邻回归原理详解 K近邻回归(K-Nearest Neighbors Regression, KNN)是一种基于实例的学习算法,用于解决回归问题。它通过找到输入数据点在特征空间中最相似的K个邻居(即最近的K个数据点),并使用这些邻居的…...
idea 开发工具properties文件中的中文不显示
用idea打开一个项目,配置文件propertise中的中文都不展示,如图: 可修改idea配置让中文显示: 勾选箭头指向的框即可,点击应用保存,重新打开配置文件,显示正常...
让DroidVNC-NG支持中文输入
DroidVNC-NG支持控制端输入内容,但是仅支持英文字符,如果需要控制输入法软键盘输入中文的话就没办法了,经过摸索找到了解决办法。 这个解决办法有个条件就是让DroidVNC-NG成为系统级应用(这个条件比较苛刻)ÿ…...
android dialog 显示时 activity 是否会执行 onPause onStop
当一个 Android Dialog 显示时,当前 Activity 通常不会执行 onPause 或 onStop 方法。Dialog 是附加到 Activity 上的一个窗口,它不会中断或替换当前的 Activity,因此 Activity 的生命周期方法 onPause 和 onStop 不会被调用。 然而…...
如何在MySQL中按字符串中的数字排序
在管理数据库时,我们经常遇到需要按嵌入在字符串中的数字进行排序的情况。这在实际应用中尤为常见,比如文件名、代码版本号等字段中通常包含数字,而这些数字往往是排序的关键。本文将详细介绍如何在MySQL中利用正则表达式提取字符串中的数字并…...
memcacheredis构建缓存服务器
Memcached&Redis构建缓存服务器 前言 许多Web应用都将数据保存到 RDBMS中,应用服务器从中读取数据并在浏览器中显示。但随着数据量的增大、访问的集中,就会出现RDBMS的负担加重、数据库响应恶化、 网站显示延迟等重大影响。Memcached/redis是高性能…...
Linux基础- 使用 Apache 服务部署静态网站
目录 零. 简介 一. linux安装Apache 二. 创建网页 三. window访问 修改了一下默认端口 到 8080 零. 简介 Apache 是世界使用排名第一的 Web 服务器软件。 它具有以下一些显著特点和优势: 开源免费:可以免费使用和修改,拥有庞大的社区支…...
接口自动化测试框架实战(Pytest+Allure+Excel)
🍅 视频学习:文末有免费的配套视频可观看 🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 1. Allure 简介 Allure 框架是一个灵活的、轻量级的、支持多语言的测试报告工具,它不…...
如何预防和处理他人盗用IP地址?
IP地址的定义及作用 解释 IP 地址在互联网中的作用。它是唯一标识网络设备的数字地址,类似于物理世界中的邮政地址。 1、IP地址盗窃的定义 解释一下什么是IP地址盗用,即非法使用他人的IP地址或者伪造IP地址的行为,这种行为可能引发法律和安…...
【ai】李沐 动手深度学学v2 环境安装:anaconda3、pycharm、d2
cuda-toolkit cuda_12.5.0_windows_network.exe 官方课程网站 第二版资源下载release版本 pycharm版本 李沐 【动手学深度学习v2 PyTorch版】 课程笔记 CUDA 选择11, 实际下载 12.5.0...
前后端分离对软件行业及架构设计的影响
在软件开发领域,前后端分离是一种越来越流行的架构设计模式。这种方法将用户界面(前端)与服务器逻辑(后端)分离开来,允许它们独立开发、测试和部署。本文将探讨前后端分离对软件行业和架构设计的影响&#…...
深入解析Dubbo架构层次
什么是Dubbo? Dubbo是阿里巴巴开源的一款高性能优秀的服务框架,致力于提供高性能和透明化的 RPC 远程服务调用方案,以及 SOA 服务治理方案。它的主要功能包括: 远程通信:提供高效的远程通信能力。负载均衡࿱…...
关于GPIO的上拉、下拉,无上下拉
1.GPIO_PULLUP(上拉) 作用和原理 作用:上拉模式会在GPIO引脚和电源电压(Vcc)之间连接一个内部上拉电阻。原理:当引脚配置为输入模式时,如果引脚没有连接到其他外部电路,内部上拉电…...
Python 语法基础二
7.常用内置函数 执行这个命令可以查看所有内置函数和内置对象(两个下划线) >>>dir(__builtins__) [__class__, __contains__, __delattr__, __delitem__, __dir__, __doc__, __eq__, __format__, __ge__, __getattribute__, __getitem__, __gt…...
HTML5与HTML:不仅仅是标签的革新
当我们提到HTML5,很多人会想到这是HTML的一个升级版本,增加了许多新的标签和特性。然而,HTML5带来的变化远不止于此。它是一个全面的网页开发框架,重新定义了网络应用程序的构建方式,为开发者提供了前所未有的灵活性和…...
Mybatis面试学习
1.介绍一下mybatis mybatis是一个半自动的ORM的框架,ORM就是对象关系映射。(对象指的是Java对象,关系指的是数据库中的关系模型,对象关系映射,指的就是在Java对象和数据库的关系模型之间建立一种对应关系)…...
el-date-picker设置时间范围
下面这种写法会报错:找不到expirationDate,这是因为涉及到this的指向问题 在普通函数中,this 的上下文并不指向 Vue 组件实例,而是取决于函数的调用方式或者是否使用了严格模式 <el-date-pickerclass"date-icon-common&q…...
Links: Challenging Puzzle Game Template(益智游戏模板)
链接:挑战益智游戏 《Links》是一款独特且具有挑战性的益智游戏,即将发布。 每个级别都会向玩家展示不同的棋盘。目标是通过移动和旋转所有棋子来连接它们。每个棋子都有自己的特点和功能-你可以移动它们,旋转它们,或者两者兼而有之。连接所有棋子,以解决难度和挑战不断增…...
java基于ssm+jsp 仓库智能仓储系统
1管理员功能模块 管理员登录,通过填写用户名、密码等信息,输入完成后选择登录即可进入智能仓储系统 ,如图1所示。 图1管理员登录界面图 智能仓储系统 ,在智能仓储系统可以查看个人中心、公告信息管理、员工管理、供应商管理、商…...
第24篇 滑动开关控制LED<二>
Q:如何使用Intel FPGA Monitor Program创建滑动开关控制LED工程并运行呢? A:创建工程的基本过程与前面的Intel FPGA Monitor Program的使用<三>一样,不同的地方是,本实验工程用到了开发板的外设硬件LED和SW&…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
