当前位置: 首页 > news >正文

Pyecharts入门

数据可视化 Pyecharts简介

Apache ECharts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了;PyEcharts是Echarts的Python接口, Pyecharts = Python + Echarts

  • Pyecharts 官方文档手册:pyecharts - A Python Echarts Plotting Library built with love.
  • Pyecharts 官方示例网站:Document
  • echart 官方网站:Apache ECharts

Pyecharts是一个强大的Python库,用于创建各种类型的数据可视化图表,包括折线图、柱状图、饼图、散点图、地图、雷达图等

Pyecharts 环境搭建

Pyeharts版本

本系列Pyecharts版本采用 1.9.0

Pyecharts 安装

建议大家在单独的隔离环境中使用pip 进行安装

pip install pyecharts==1.9.0

也可以使用源码方式安装最新版,但是由于pyecharts更新方式,不同版本的API可能略有不同

$ git clone https://github.com/pyecharts/pyecharts.git
$ cd pyecharts
$ pip install -r requirements.txt
$ python setup.py install
# 或者执行 python install.py

在可视化之前,会对原始数据进行一些列的整理,数据处理过程中,可能会用到

  • pandas
  • numpy
  • matplotlib

等Python工具,在进行绘图时,会高频率访问pyecharts API 文档和示例官网

  • Pyecharts 官方文档手册:pyecharts - A Python Echarts Plotting Library built with love.
  • Pyecharts 官方示例网站:Document
  • echart 官方网站:Apache ECharts

Pyecharts 柱状图绘制 

我们使用中国各省2003年至2021年结婚登记数与离婚登记数数据进行分析与可视化,该数据来自中国国家统计局官方数据。

数据准备

import pandas as pd
import numpy as nppath_marry = "结婚数据.csv"
path_divorse = "离婚数据.csv"
marry_data = pd.read_csv(path_marry)
divorse_data = pd.read_csv(path_divorse)# 只需要在顶部声明 CurrentConfig.ONLINE_HOST 即可
# from pyecharts.globals import CurrentConfig, OnlineHostType# OnlineHostType.NOTEBOOK_HOST 默认值为 http://localhost:8888/nbextensions/assets/
# CurrentConfig.ONLINE_HOST = OnlineHostType.NOTEBOOK_HOST

可以预览一下结婚数据(离婚数据类似)

marry_data

853c5ab4c9e741da9cd119b712c93e05.png

显示了各个省2003年到2021年结婚数据,单位是(万对),数据中,并没有显示全国合计的数据,可以给当前的数据增加一行,表示全国求和的数据,执行如下代码:

demo = marry_data.set_index(marry_data["地区"]).drop(columns=["地区"])
demo = demo.transpose()
demo['全国合计'] = demo.sum(axis=1)
marry_data = demo.transpose()

需求1,要求对全国结婚登记数每年度数据变化展现

marry_data.loc["全国合计"]

3dbcb6eada944275af091a4d5924918a.png

很明显,是一个Series类型的数据,该类型数据有两个需要展示的内容,分别是index和values,可视化图标中能够展示该类型数据有很多,但是最贴题的应该是条柱图,在进行图形展示之前,我们还需要了解,Pyecharts到底是怎么进行条柱图绘制的?

pyecharts 条柱图的绘制

在官方示例中,直接copy过来最简单的pyecharts的源码

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Fakerc = (Bar().add_xaxis(Faker.choose()).add_yaxis("商家A", Faker.values()).add_yaxis("商家B", Faker.values()).set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题")).render("bar_base.html")
)

大家执行这些代码时,并没有什么效果,并不是代码错误,而是在代码中执行render("bar_base.html")这个方法,默认规则是生成一个HTML页面,在页面中使用echarts渲染对应图表;大家可以查看一下,在当前目录下,是否生成了一个bar_base.html内容,为了学习过程中的联系性,我们不选择生成一个单独的页面,我们选择在notebook中进行渲染,只需要替换一点点代码,把render方法替换成render_notebook

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker
c = (Bar().add_xaxis(Faker.choose()).add_yaxis("商家A", Faker.values()).add_yaxis("商家B", Faker.values()).set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
)
c.render_notebook()

解析一下这段代码,首先,pyecharts的编程风格是链式调用风格,在pyecharts中每一种图表都是实例对象,柱状图就是Bar这个类实例化后的结果,柱状图绘制其实需要两种数据,X轴上的数据,以及Y轴上的数据,柱状图是通过条柱的高低或者长短来表示数据;所以,在Bar实例化后,需要添加两个轴方向上的数据,add_xaxis 方法添加的就是X轴向的数据,Faker.choose()其实就是pyecharts提供的一个方便产生随机数据的方法,随机产生数据。对于柱状图而言,X轴向的数据是离散的,并不是连续的!一般是种类、类别数据

add_yaxis 方法就是添加Y轴向数据,也是条柱图要表达的数据,pyecharts可以支持多Series系列数据,什么是系列呢,该图表有两种颜色的条柱,一种颜色的条柱就是Series数据,调用add_yaxis方法就会像Bar实例添加一个系列的数据。这个add_yaxis 是pyecharts非常核心的方法,可以查看下这个方法的参数

help(Bar().add_yaxis)# 
Help on method add_yaxis in module pyecharts.charts.basic_charts.bar:add_yaxis(series_name: str, y_axis: Sequence[Union[int, float, pyecharts.options.charts_options.BarItem, dict]], *, is_selected: bool = True, xaxis_index: Union[int, float, NoneType] = None, yaxis_index: Union[int, float, NoneType] = None, is_legend_hover_link: bool = True, color: Optional[str] = None, is_realtime_sort: bool = False, is_show_background: bool = False, background_style: Union[pyecharts.options.charts_options.BarBackgroundStyleOpts, dict, NoneType] = None, stack: Optional[str] = None, stack_strategy: Optional[str] = 'samesign', sampling: Optional[str] = None, cursor: Optional[str] = 'pointer', bar_width: Union[int, float, str] = None, bar_max_width: Union[int, float, str] = None, bar_min_width: Union[int, float, str] = None, bar_min_height: Union[int, float] = 0, category_gap: Union[int, float, str] = '20%', gap: Optional[str] = '30%', is_large: bool = False, large_threshold: Union[int, float] = 400, dimensions: Optional[Sequence] = None, series_layout_by: str = 'column', dataset_index: Union[int, float] = 0, is_clip: bool = True, z_level: Union[int, float] = 0, z: Union[int, float] = 2, label_opts: Union[pyecharts.options.series_options.LabelOpts, dict, NoneType] = <pyecharts.options.series_options.LabelOpts object at 0x10567fcc0>, markpoint_opts: Union[pyecharts.options.series_options.MarkPointOpts, dict, NoneType] = None, markline_opts: Union[pyecharts.options.series_options.MarkLineOpts, dict, NoneType] = None, tooltip_opts: Union[pyecharts.options.global_options.TooltipOpts, dict, NoneType] = None, itemstyle_opts: Union[pyecharts.options.series_options.ItemStyleOpts, dict, NoneType] = None, encode: Union[str, pyecharts.commons.utils.JsCode, dict, NoneType] = None) method of pyecharts.charts.basic_charts.bar.Bar instance

有很多很多参数,很夸张,这些参数控制着这个系列数据的展现形式,有各种各样的配置,比如条柱颜色,条柱上Label的位置等等,具体信息请查看pyecharts的官网,解释很详细 点我.

可以观察到,这个方法有两个必须传递的参数,第一个参数和第二个参数,分别表示该系列数据的名称,这个系列名称会自动添加到该图形的legend上去,第二个参数就是该系列数据的真实值,其他参数,未传入的参数都有默认值,注意,这些参数主要控制着每一种系列数据的样式,也就是说,不同系列数据可以设置不同的样式!

重点!

接下来有调用了一个很重要的方法,set_global_opts方法,这个方法是实例对象调用的,但是他,并不是对系列数据进行修饰,而是对整体图表进行修饰,称之为全局项配置。负责图形大部分整体的修饰,主要包括:

  • 初始化配置
  • 动画配置
  • 标题配置
  • 图例配置
  • 坐标轴配置
  • 工具箱配置
  • 动画配置

对Pyecharts有了一定了解之后,我们就可以把marry_data.loc["全国合计"] 这个Pandas中的Series数据使用柱图表现出来了,只需要替换add_xaxis和add_xaxis方法中的数据值。

tips:

pyecharts 中只支持list等 Python原生数据,所以还要对numpy数组进行一个转换,使用tolist方法

show_data1 = marry_data.loc["全国合计"]
x_axis_data = pd.Series(show_data1.index).apply(lambda x:x[:-1]).values.tolist()
y_axis_data = show_data1.values.tolist()
c = (Bar().add_xaxis(x_axis_data).add_yaxis("全国数据分布", y_axis_data)
)
c.render_notebook()

没有经过修饰的 图表肯定不是我们想要的,接下来,我们就要对该图表进行修饰,第一步,肯定是对不规则的label进行设计。由于图表密度比较大,产生重叠,所以最好把label移入柱体内部。这个label是series条柱本身的设计,所以可以在add_yaxis中通过参数配置,具体规则,还是需要对文档进行查询 来吧,点我.

c = (Bar(init_opts=opts.InitOpts(width="1000px",height="400px")).add_xaxis(x_axis_data).add_yaxis("全国数据分布", y_axis_data, label_opts=opts.LabelOpts(position="inside", color='white', rotate=90, font_size=12, font_weight='blod'))
)
c.render_notebook()

结果是清晰了一些,但是还是有问题,显示数据并没有格式化,数据格式化可以对原始数据进行格式化,也可以在现实的时候通过配置进行控制,通过查询文档,发现,在配置LabelOpts时,支持formatter这样的格式化函数,但是不幸的是,这个是需要传入一个javascript函数,也就是说,在使用Python编程完成可视化时,还需要了解一点点的JavaScript代码,以下是文档对该回调函数的解释

    # 参数 params 是 formatter 需要的单个数据集。格式如下:# {#    componentType: 'series',#    // 系列类型#    seriesType: string,#    // 系列在传入的 option.series 中的 index#    seriesIndex: number,#    // 系列名称#    seriesName: string,#    // 数据名,类目名#    name: string,#    // 数据在传入的 data 数组中的 index#    dataIndex: number,#    // 传入的原始数据项#    data: Object,#    // 传入的数据值#    value: number|Array,#    // 数据图形的颜色#    color: string,# }

接下来可以使用js代码稍微修饰一下

from pyecharts.commons.utils import JsCode
js_code_01 = """function (param) {return Number(param.data).toFixed(2)}"""
c = (Bar(init_opts=opts.InitOpts(width="1000px",height="400px")).add_xaxis(x_axis_data).add_yaxis("全国数据分布", y_axis_data, label_opts=opts.LabelOpts(position="inside", color='white', rotate=90, font_size=12, font_weight='blod', formatter=JsCode(js_code_01)))
)
c.render_notebook()

接下来,还需要进行文本的显示,这里的文本是指图表的标题,这里是全局设置,通过title_opts参数设置

c = (Bar(init_opts=opts.InitOpts(width="1000px",height="400px")).add_xaxis(x_axis_data).add_yaxis("全国数据分布", y_axis_data, label_opts=opts.LabelOpts(position="inside", color='white', rotate=90, font_size=12, font_weight='blod', formatter=JsCode(js_code_01))).set_global_opts(title_opts=opts.TitleOpts(title = "全国结婚登记数量(万对)数据分布", subtitle="结婚数据"))
)
c.render_notebook()

到此,基本设计已经完结,但是,当前可视化图表颜色表达还不是特别突出,为了得到良好的视觉效果,可以使用VisualMapOpts 进行颜色与数据的映射,该配置可以使用全局配置。

c = (Bar(init_opts=opts.InitOpts(width="1000px",height="400px", theme='dark')).add_xaxis(x_axis_data).add_yaxis("全国数据分布", y_axis_data, label_opts=opts.LabelOpts(position="inside", color='white', rotate=90, font_size=12, font_weight='blod', formatter=JsCode(js_code_01))).set_global_opts(title_opts=opts.TitleOpts(title = "全国结婚登记数量(万对)数据分布", subtitle="结婚数据"),visualmap_opts=opts.VisualMapOpts(max_ = show_data1.max(), min_ = show_data1.min(), range_color = ['#3867d6','#45aaf2','#0fb9b1','#26de81','#fed330','#fa8231','#eb3b5a']))
)
c.render_notebook()

我们还可以给条柱设计阴影效果,让图表显示的更立体,通过属性ItemStyleOpts,穿越时空.,但是pyecharts并没有开放对应的阴影效果的属性,但是我们可以使用字典形式的配置,来指定阴影效果,可以直接查阅echarts再次穿越对应的阴影设置,在pyecharts中使用字典配置

show_data2 = show_data1.sort_index()
x_axis_data = pd.Series(show_data2.index).apply(lambda x:x[:-1]).values.tolist()
y_axis_data = show_data2.values.tolist()
c = (Bar(init_opts=opts.InitOpts(width="1000px",height="400px", theme='dark')).add_xaxis(x_axis_data).add_yaxis("全国数据分布", y_axis_data, label_opts=opts.LabelOpts(position="inside", color='white', rotate=90, font_size=12, font_weight='blod', formatter=JsCode(js_code_01)),itemstyle_opts={"areaColor":'#091632', 'borderColor':'#4168E1', 'shadowColor':'#4168E1', "shadowBlur":5, 'opacity':1}, markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(name="平均值", type_="average", ),opts.MarkLineItem(name="最低值", type_="min")],linestyle_opts=opts.LineStyleOpts(width=2, color="#8854d0", type_="dashed", opacity=0.5))).set_global_opts(title_opts=opts.TitleOpts(title = "全国结婚登记数量(万对)数据分布", subtitle="结婚数据"),visualmap_opts=opts.VisualMapOpts(max_ = show_data1.max(), min_ = show_data1.min(), range_color = ['#3867d6','#45aaf2','#0fb9b1','#26de81','#fed330','#fa8231','#eb3b5a']))
)
c.render_notebook()

需求2,计算2019年各省结婚登记数量对比

上一个需求数据对比的维度是时间,当前这个需求对比的维度则转变成了省份

数据准备

show_data2 = marry_data["2019年"]
show_data2 = show_data2.iloc[:-1]
show_data2

c9f232af41054f8b969995b9fa91467d.png

绘图展示

需要展现的数据依然是Series数据,本案例使用条形图进行数据展示,首先去示例官网寻找示例,记得常回来看看, 这里涉及到了另一个方法,就是set_series_opts方法,这个方法是对有Series系列进行属性设计,他接受的参数与add_yaxis方法接受的参数类似。

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Fakerc = (Bar().add_xaxis(Faker.choose()).add_yaxis("商家A", Faker.values()).add_yaxis("商家B", Faker.values()).reversal_axis().set_series_opts(label_opts=opts.LabelOpts(position="right")).set_global_opts(title_opts=opts.TitleOpts(title="Bar-翻转 XY 轴"))
)
c.render_notebook()

可以观察到,Bar实例对象调用了reversal_axis方法,进行了X轴与Y轴数据的转换,从而柱形图变成了条形图,所以在替换数据时,不需要改变数据轴向的位置。

条形图显示的数据,一般是排序之后的数据,这里排序就对数据源进行排序

show_data2 = show_data2.sort_values()
x_axis_data = pd.Series(show_data2.index).values.tolist()
y_axis_data = show_data2.values.tolist()
c = (Bar(init_opts=opts.InitOpts(width="800px",height="700px")).add_xaxis(x_axis_data).add_yaxis("2019年结婚登记数量(万对)", y_axis_data).reversal_axis().set_series_opts(label_opts=opts.LabelOpts(position="right")).set_global_opts(title_opts=opts.TitleOpts(title="全国各省2019年登记结婚数量(万对)"))
)
c.render_notebook()

需求3,查看2019年各地区结婚离婚登记数据对比

之前的需求都是查看结婚登记数据,现在需要再一张图表上展示两种系列数据,结婚登记数与离婚登记数,当然,普通的展示只是需要调用两次add_yaxis方法,两种系列数据就能展示出来。

demo = divorse_data.set_index(divorse_data["地区"]).drop(columns=["地区"])
show_data3 = demo['2019年']
# show_data3.index == show_data2.index
show_data2 = marry_data["2019年"][:-1]
show_data3.index == show_data2.index

多Series绘制

x_axis_data = show_data2.index.tolist()
y_axis_data1 = show_data2.values.tolist()
y_axis_data2 = show_data3.values.tolist()
c = (Bar(init_opts=opts.InitOpts(width="800px",height="700px")).add_xaxis(x_axis_data).add_yaxis("2019年结婚登记数量(万对)", y_axis_data1).add_yaxis("2019年离婚登记数量(万对)", y_axis_data2).reversal_axis().set_series_opts(label_opts=opts.LabelOpts(position="right")).set_global_opts(title_opts=opts.TitleOpts(title="全国各省2019年登记结婚数量(万对)"))
)
c.render_notebook()

图形绘制之后,发现对比数据比较杂乱,这里可以使用堆叠图形来进行优化。这里第一次涉及到了legend_opts的设计,来嘛,来嘛

c = (Bar(init_opts=opts.InitOpts(width="800px",height="700px")).add_xaxis(x_axis_data).add_yaxis("2019年结婚登记数量(万对)", y_axis_data1, stack="happy", itemstyle_opts={"color":"#ed1941"}).add_yaxis("2019年离婚登记数量(万对)", y_axis_data2, stack="happy", itemstyle_opts={"color":"#006400"}).reversal_axis().set_series_opts(label_opts=opts.LabelOpts(position="insideRight")).set_global_opts(title_opts=opts.TitleOpts(title="全国各省2019年登记结婚数量(万对)"),legend_opts=opts.LegendOpts(pos_right='10%', pos_top='2%', orient="horizontal" ))
)
c.render_notebook()

 

 

相关文章:

Pyecharts入门

数据可视化 Pyecharts简介 Apache ECharts 是一个由百度开源的数据可视化&#xff0c;凭借着良好的交互性&#xff0c;精巧的图表设计&#xff0c;得到了众多开发者的认可。而 Python 是一门富有表达力的语言&#xff0c;很适合用于数据处理。当数据分析遇上数据可视化时&#…...

Socket编程详解(一)服务端与客户端的双向对话

目录 预备知识 视频教程 项目前准备知识点 1、服务器端程序的编写步骤 2、客户端程序编写步骤 代码部分 1、服务端FrmServer.cs文件 2、客户端FrmClient.cs文件 3、启动文件Program.cs 结果展示 预备知识 请查阅博客http://t.csdnimg.cn/jE4Tp 视频教程 链接&#…...

使用Python实现深度学习模型:强化学习与深度Q网络(DQN)

深度Q网络(Deep Q-Network,DQN)是结合深度学习与强化学习的一种方法,用于解决复杂的决策问题。本文将详细介绍如何使用Python实现DQN,主要包括以下几个方面: 强化学习简介DQN算法简介环境搭建DQN模型实现模型训练与评估1. 强化学习简介 强化学习是一种训练智能体(agent…...

Py-Spy、Scalene 和 VizTracer 的对比分析

在前几篇文章中&#xff0c;我们详细介绍了如何使用 py-spy、scalene 和 viztracer 进行性能分析和优化。今天&#xff0c;我们将对这三个性能分析工具进行详细对比&#xff0c;帮助你选择最适合你的工具。 工具简介 Py-Spy&#xff1a; 实时性能分析&#xff1a;Py-Spy 可以…...

软考架构师考试内容

软考系统架构设计师考试是中国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试&#xff08;简称软考&#xff09;中的一项高级资格考试&#xff0c;旨在评估考生是否具备系统架构设计的能力。根据提供的参考资料&#xff0c;考试内容主要包括以下几个方面&#…...

【MySQL基础篇】概述及SQL指令:DDL及DML

数据库是一个按照数据结构来组织、存储和管理数据的仓库。以下是对数据库概念的详细解释&#xff1a;定义与基本概念&#xff1a; 数据库是长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。 数据库不仅仅是数据的简单堆积&#xff0c;而是遵循一定的规则…...

计算机网络 —— 网络字节序

网络字节序 1、网络字节序 (Network Byte Order)和本机转换 1、大端、小端字节序 “大端” 和” 小端” 表示多字节值的哪一端存储在该值的起始地址处&#xff1b;小端存储在起始地址处&#xff0c;即是小端字节序&#xff1b;大端存储在起始地址处&#xff0c;即是大端字节…...

区块链不可能三角

区块链不可能三角&#xff1a;探索去中心化、安全与可扩展性的权衡 引言 区块链技术自诞生以来&#xff0c;以其去中心化、透明、安全等特点吸引了全球的关注&#xff0c;成为金融科技领域的重要革新力量。然而&#xff0c;随着区块链应用的日益广泛&#xff0c;一个核心问题…...

新手第一个漏洞复现:MS17-010(永恒之蓝)

文章目录 漏洞原理漏洞影响范围复现环境复现步骤 漏洞原理 漏洞出现在Windows SMB v1中的内核态函数srv!SrvOs2FeaListToNt在处理FEA&#xff08;File Extended Attributes&#xff09;转换时。该函数在将FEA list转换成NTFEA&#xff08;Windows NT FEA&#xff09;list前&am…...

代码随想录Day64

98.所有可达路径 题目&#xff1a;98. 所有可达路径 (kamacoder.com) 思路&#xff1a;果断放弃 答案 import java.util.*;public class Main {private static List<List<Integer>> adjList;private static List<List<Integer>> allPaths;private sta…...

Angular 指令

Angular 指令是 Angular 框架中的一项核心功能&#xff0c;它允许开发人员扩展 HTML 的功能&#xff0c;并创建可复用的组件和行为。以下是一些常见的 Angular 指令&#xff1a; 1. 组件指令 (Component Directives) 组件指令是最常用的一种指令&#xff0c;用于创建可复用的 U…...

移动端 UI 风格,书写华丽篇章

移动端 UI 风格&#xff0c;书写华丽篇章...

flutter开发实战-ListWheelScrollView与自定义TimePicker时间选择器

flutter开发实战-ListWheelScrollView与自定义TimePicker 最近在使用时间选择器的时候&#xff0c;需要自定义一个TimePicker效果&#xff0c;当然这里就使用了ListWheelScrollView。ListWheelScrollView与ListView类似&#xff0c;但ListWheelScrollView渲染效果类似滚筒效果…...

stable diffusion 模型和lora融合

炜哥的AI学习笔记——SuperMerger插件学习 - 哔哩哔哩接下来学习的插件名字叫做 SuperMerger,它的作用正如其名,可以融合大模型或者 LoRA,一般来说会结合之前的插件 LoRA Block Weight 使用,在调整完成 LoRA 模型的权重后使用改插件进行重新打包。除了 LoRA ,Checkpoint 也…...

Spring Boot中的分布式缓存方案

Spring Boot中的分布式缓存方案 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将探讨在Spring Boot应用中实现分布式缓存的方案&#xff0c;以提升系统…...

AI写作革命:如何用AI工具轻松搞定700+学科的论文?

不知道大家有没有发现&#xff0c;随着人工智能技术的快速发展&#xff0c;AI工具正逐渐渗透到我们日常生活的各个方面&#xff0c;极大地提高了我们的工作和学习效率。无论是AI写作、AI绘画、AI思维导图&#xff0c;还是AI幻灯片制作&#xff0c;这些工具已成为我们不可或缺的…...

v-for中key的原理以及用法

在 Vue.js 中&#xff0c;v-for 指令用于基于源数据多次渲染元素或模板块。当使用 v-for 渲染列表时&#xff0c;为每个列表项提供一个唯一的 key 属性是非常重要的。key 的主要作用是帮助 Vue 跟踪每个节点的身份&#xff0c;从而重用和重新排序现有元素。 先来张原理图&#…...

基于强化学习的目标跟踪论文合集

文章目录 2020UAV Maneuvering Target Tracking in Uncertain Environments Based on Deep Reinforcement Learning and Meta-LearningUAV Target Tracking in Urban Environments Using Deep Reinforcement Learning 2021Research on Vehicle Dispatch Problem Based on Kuhn-…...

高质量AIGC/ChatGPT/大模型资料分享

2023年要说科技圈什么最火爆&#xff0c;一定是ChatGPT、AIGC&#xff08;人工智能生成内容&#xff09;和大型语言模型。这些技术前沿如同科技世界的新潮流&#xff0c;巨浪拍岸&#xff0c;引发各界关注。ChatGPT的互动性和逼真度让人们瞠目&#xff0c;它能与用户展开流畅对…...

使用Python进行Socket接口测试

大家好&#xff0c;在现代软件开发中&#xff0c;网络通信是不可或缺的一部分。无论是传输数据、获取信息还是实现实时通讯&#xff0c;都离不开可靠的网络连接和有效的数据交换机制。而在网络编程的基础中&#xff0c;Socket&#xff08;套接字&#xff09;技术扮演了重要角色…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...