逻辑回归模型模拟实现:从零开始
引言
逻辑回归是一种用于二分类问题的机器学习算法。尽管它的名字中有“回归”,但它实际上是用于分类的。在本文中,我们将通过模拟数据来演示逻辑回归模型的实现。
逻辑回归简介
逻辑回归通过使用逻辑函数(通常是Sigmoid函数)将线性回归的输出映射到0和1之间,从而预测二元结果的概率。
模拟数据
我们将模拟一些二维数据,其中特征和标签是随机生成的。
安装必要的库
pip install numpy scikit-learn matplotlib
模拟数据和模型实现
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt# 设置随机种子以确保结果可复现
np.random.seed(0)# 模拟数据:100个样本,每个样本2个特征
n_samples = 100
X = np.random.randn(n_samples, 2) # 特征
true_prob = 1 / (1 + np.exp(-(X[:, 0] + X[:, 1]))) # 真实概率# 添加噪声到真实概率以模拟实际数据
y = np.random.binomial(1, true_prob, size=n_samples)# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建逻辑回归模型实例
model = LogisticRegression()# 训练模型
model.fit(X_train, y_train)# 预测测试集
y_pred = model.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")# 可视化决策边界
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),np.arange(y_min, y_max, 0.1))Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, alpha=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', s=20)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Decision Boundary of the Logistic Regression Model')
plt.show()
结论
通过上述代码,我们模拟了数据并训练了一个逻辑回归模型。我们还可视化了决策边界,这有助于我们理解模型是如何区分不同类别的。
相关文章:
逻辑回归模型模拟实现:从零开始
引言 逻辑回归是一种用于二分类问题的机器学习算法。尽管它的名字中有“回归”,但它实际上是用于分类的。在本文中,我们将通过模拟数据来演示逻辑回归模型的实现。 逻辑回归简介 逻辑回归通过使用逻辑函数(通常是Sigmoid函数)将…...

Docker基本使用和认识
目录 基本使用 镜像仓库 镜像操作 Docker 如何实现镜像 1) namespace 2) cgroup 3) LXC Docker常见的网络类型 bridge网络如何实现 基本使用 镜像仓库 镜像仓库登录 1)docker login 后面不指定IP地址,则默认登录到 docker hub 上 退出 2)docker logo…...

Halcon 文本文件操作,形态学
一文件的读写 *******************************************************向文本文件写入字符串内容*************************************************************read_image (Image, fabrik)threshold (Image, Region, 0, 120)area_center (Region, Area, Row, Column)open_…...
【鸿蒙】稍微理解一下Stage模型
鸿蒙的Stage模型是HarmonyOS多端统一的应用开发框架中的一个核心概念,用于描述应用的界面层次结构和组件之间的关系。下面将详细解析Stage模型的主要组成部分和特点: 模型组成: UIAbility组件:这是应用中负责绘制用户界面的组件&a…...

毕业答辩制作PPT【攻略】
毕业答辩制作PPT【攻略】 前言版权毕业答辩制作PPT【攻略】一、WPS AI 15天免费会员二、AI文档生成PPT三、修改完善PPT 最后 前言 2024-06-14 23:43:05 以下内容源自《【攻略】》 仅供学习交流使用 版权 禁止其他平台发布时删除以下此话 本文首次发布于CSDN平台 作者是CSDN…...
深入解析npm install --save-dev:开发依赖管理的艺术
npm(Node Package Manager)是JavaScript编程语言的包管理器,用于管理项目中的依赖关系。在开发过程中,合理地管理依赖是保证项目可维护性和可扩展性的关键。npm install命令是npm中最常用的命令之一,而--save-dev参数则…...
福布斯 AI 50 榜单中唯一开源向量数据库:Weaviate
本篇文章,聊聊福布斯全球网站前俩月发布的 2023 AI 50 榜单中的唯一一个开源的向量数据库:Weaviate。 它在数据持久化和容错性上表现非常好、支持混合搜索、支持水平扩展,同时又保持了轻量化。官方主打做 AI 时代的原生数据库,减…...

信息学奥赛初赛天天练-38-CSP-J2021阅读程序-约数个数、约数和、埃氏筛法、欧拉筛法筛素数应用
PDF文档公众号回复关键字:20240628 2021 CSP-J 阅读程序3 1阅读程序(判断题1.5分 选择题3分 共计40分 ) 01 #include<stdio.h> 02 using namespace std; 03 04 #define n 100000 05 #define N n1 06 07 int m; 08 int a[N],b[N],c[N],d[N]; 09 int f[N],g[N]; 10 11 …...

第100+13步 ChatGPT学习:R实现决策树分类
基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。 答曰:可!用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了,就帮各位搬运一下吧。 二、R代码实现决策树分类 (…...

Hi3861 OpenHarmony嵌入式应用入门--LiteOS MessageQueue
CMSIS 2.0接口中的消息(Message)功能主要涉及到实时操作系统(RTOS)中的线程间通信。在CMSIS 2.0标准中,消息通常是通过消息队列(MessageQueue)来进行处理的,以实现不同线程之间的信息…...

ffmpeg编码图象时报错Invalid buffer size, packet size * < expected frame_size *
使用ffmpeg将单个yuv文件编码转为jpg或其他图像格式时,报错: Truncating packet of size 11985408 to 3585 [rawvideo 0x1bd5390] Packet corrupt (stream 0, dts 1). image_3264_2448_0.yuv: corrupt input packet in stream 0 [rawvideo 0x1bd7c60…...
解决类重复的问题
1.针对AndroidX 类重复问题 解决办法: android.useAndroidXtrue android.enableJetifiertrue2.引用其他sdk出现类重复的问题解决办法:configurations {all { // You should exclude one of them not both of themexclude group: "com.enmoli"…...
使用 shell 脚本 统计app冷启动耗时
下面是一个 shell 脚本,它使用 参数将包名称作为参数--app,识别相应应用程序进程的 PID,使用 终止该进程adb shell kill,最后使用 重新启动该应用程序adb shell am start: #!/bin/bash# Check if package name is pro…...

使用容器部署redis_设置配置文件映射到本地_设置存储数据映射到本地_并开发java应用_连接redis---分布式云原生部署架构搭建011
可以看到java应用的部署过程,首先我们要准备一个java应用,并且我们,用docker,安装一个redis 首先我们去start.spring.io 去生成一个简单的web项目,然后用idea打开 选择以后下载 放在这里,然后我们去安装redis 在公共仓库中找到redis . 可以看到它里面介绍说把数据放到了/dat…...

第五节:如何使用其他注解方式从IOC中获取bean(自学Spring boot 3.x的第一天)
大家好,我是网创有方,上节我们实践了通过Bean方式声明Bean配置。咱们这节通过Component和ComponentScan方式实现一个同样功能。这节实现的效果是从IOC中加载Bean对象,并且将Bean的属性打印到控制台。 第一步:创建pojo实体类studen…...

Paragon NTFS与Tuxera NTFS有何区别 Mac NTFS 磁盘读写工具选哪个好
macOS系统虽然以稳定、安全系数高等优点著称,但因其封闭性,不能对NTFS格式磁盘写入数据常被人们诟病。优质的解决方案是使用磁盘管理软件Paragon NTFS for Mac(点击获取激活码)和Tuxera NTFS(点击获取激活码࿰…...
EtherCAT主站IGH-- 2 -- IGH之coe_emerg_ring.h/c文件解析
EtherCAT主站IGH-- 2 -- IGH之coe_emerg_ring.h/c文件解析 0 预览一 该文件功能coe_emerg_ring.c 文件功能函数预览 二 函数功能介绍coe_emerg_ring.c 中主要函数的作用1. ec_coe_emerg_ring_init2. ec_coe_emerg_ring_clear3. ec_coe_emerg_ring_size4. ec_coe_emerg_ring_pus…...
psensor 的手势功能
psensor 的手势功能的移植过程 有时间再来写下...

使用 nvm 管理 Node 版本及 pnpm 安装
文章目录 GithubWindows 环境Mac/Linux 使用脚本进行安装或更新Mac/Linux 环境变量nvm 常用命令npm 常用命令npm 安装 pnpmNode 历史版本 Github https://github.com/nvm-sh/nvm Windows 环境 https://nvm.uihtm.com/nvm.html Mac/Linux 使用脚本进行安装或更新 curl -o- …...

uni-appx使用form表单页面初始化报错
因为UniFormSubmitEvent的类型时 e-->detail-->value,然后没有了具体值。所以页面初始化的时候 不能直接从value取值,会报错找不到 所以form表单里的数据我们要设置成一个对象来存放 这个问题的关键在于第22行代码 取值: 不能按照点的方式取值 …...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...