【深度学习基础】`view` 和 `reshape` 的参数详解
目录
- 基本概念
- 参数详解
- 示例
- `view` 和 `reshape` 在具体应用中的参数解释
- 参数解释
- 更多示例
- 高维张量示例
- 非连续内存示例
- 总结
基本概念
view 和 reshape 都用于调整张量的形状,它们的参数是新的形状,每个维度的大小可以指定为具体的数值或者 -1。-1 表示这个维度的大小由张量的总元素数量自动推断。
参数详解
new_shape:这是一个 tuple 或者一个 list,定义了新的形状。每个元素代表对应维度的大小。-1:特殊值,表示该维度的大小由其他维度自动推断。
示例
假设有一个张量 tensor,形状为 [batch_size, seq_len, num_labels]。
import torchtensor = torch.randn(4, 3, 5) # 示例张量,形状为 (4, 3, 5)
要将其形状调整为 [12, 5],可以使用 view 或 reshape。
# 使用 view
reshaped_tensor_view = tensor.view(-1, 5)
print("View tensor shape:", reshaped_tensor_view.shape) # 输出: torch.Size([12, 5])# 使用 reshape
reshaped_tensor_reshape = tensor.reshape(-1, 5)
print("Reshape tensor shape:", reshaped_tensor_reshape.shape) # 输出: torch.Size([12, 5])
view 和 reshape 在具体应用中的参数解释
在序列标记分类任务中,我们通常需要将 logits 和标签调整为适合计算损失的形状。
假设 logits 的形状为 [batch_size, seq_len, num_labels],我们希望将其调整为 [batch_size * seq_len, num_labels],以便与标签 [batch_size * seq_len] 对应。
以下是使用 view 和 reshape 的示例:
import torch
import torch.nn as nn
from transformers import BertTokenizer, BertForTokenClassification# 初始化模型和tokenizer
model_name = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForTokenClassification.from_pretrained(model_name, num_labels=5) # 假设有5个分类# 假设输入文本
text = "I love natural language processing."
inputs = tokenizer(text, return_tensors="pt")# 获取模型输出
outputs = model(**inputs)
seq_logits = outputs.logits# 假设标签映射
tags_to_idx = {'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-LOC': 3, 'I-LOC': 4}
tags = torch.tensor([[0, 0, 0, 0, 1, 2, 3, 4]]) # 示例标签,形状为 (batch_size, seq_len)# 使用 reshape 调整形状
pred = seq_logits.reshape([-1, len(tags_to_idx)])
label = tags.reshape([-1])
ignore_index = tags_to_idx["O"]# 计算损失
criterion = nn.CrossEntropyLoss(ignore_index=ignore_index)
loss = criterion(pred, label)
print("Loss with reshape:", loss.item())# 使用 view 调整形状
pred_view = seq_logits.view(-1, len(tags_to_idx))
label_view = tags.view(-1)# 计算损失
loss_view = criterion(pred_view, label_view)
print("Loss with view:", loss_view.item())
参数解释
seq_logits.reshape([-1, len(tags_to_idx)])和seq_logits.view(-1, len(tags_to_idx)]):-1:表示这个维度的大小由其他维度自动推断。这里是将[batch_size, seq_len, num_labels]调整为[batch_size * seq_len, num_labels]。len(tags_to_idx):表示num_labels,即分类的数量。
更多示例
高维张量示例
假设有一个四维张量,形状为 [2, 2, 3, 4],我们希望将其调整为 [4, 3, 4]:
import torchtensor = torch.randn(2, 2, 3, 4)
print("Original shape:", tensor.shape) # 输出: torch.Size([2, 2, 3, 4])# 使用 view 调整形状
view_tensor = tensor.view(4, 3, 4)
print("View tensor shape:", view_tensor.shape) # 输出: torch.Size([4, 3, 4])# 使用 reshape 调整形状
reshape_tensor = tensor.reshape(4, 3, 4)
print("Reshape tensor shape:", reshape_tensor.shape) # 输出: torch.Size([4, 3, 4])
非连续内存示例
import torchtensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
transpose_tensor = tensor.t() # 转置张量
print("Transpose shape:", transpose_tensor.shape) # 输出: torch.Size([3, 2])# 使用 view(会报错,因为内存不连续)
try:view_tensor = transpose_tensor.view(-1)
except RuntimeError as e:print("Error using view:", e)# 使用 contiguous 方法确保内存连续
contiguous_tensor = transpose_tensor.contiguous()
view_tensor = contiguous_tensor.view(-1)
print("Contiguous view tensor:", view_tensor)
print("Contiguous view tensor shape:", view_tensor.shape) # 输出: torch.Size([6])# 使用 reshape
reshape_tensor = transpose_tensor.reshape(-1)
print("Reshape tensor:", reshape_tensor)
print("Reshape tensor shape:", reshape_tensor.shape) # 输出: torch.Size([6])
总结
view和reshape参数:- 参数是一个 tuple 或者 list,定义新的形状。
-1表示该维度的大小由其他维度自动推断。
view的限制:要求输入张量是连续的。reshape的灵活性:可以处理非连续内存的张量。
通过这些详细的例子和解释,你可以更好地理解如何使用 view 和 reshape 来调整张量的形状。
相关文章:
【深度学习基础】`view` 和 `reshape` 的参数详解
目录 基本概念参数详解 示例view 和 reshape 在具体应用中的参数解释参数解释 更多示例高维张量示例非连续内存示例 总结 基本概念 view 和 reshape 都用于调整张量的形状,它们的参数是新的形状,每个维度的大小可以指定为具体的数值或者 -1。-1 表示这个…...
【笔记】Spring Cloud Gateway 实现 gRPC 代理
Spring Cloud Gateway 在 3.1.x 版本中增加了针对 gRPC 的网关代理功能支持,本片文章描述一下如何实现相关支持.本文主要基于 Spring Cloud Gateway 的 官方文档 进行一个实践练习。有兴趣的可以翻看官方文档。 由于 Grpc 是基于 HTTP2 协议进行传输的,因此 Srping …...
云顶之弈数据网站
摘要:随着云顶之弈游戏的广泛流行,玩家对于游戏数据的查询和最新资讯的获取需求呈现出显著增长的趋势。设计一款云顶之弈数据网站,为玩家提供便捷、高效的数据查询和资讯浏览服务,能满足玩家对于游戏数据的快速查询和实时资讯获取…...
Linux(Ubuntu)下源码开发整个流程完成版本(下载->编译->模拟器运行)
写这篇文章没别的意思, 年纪大了记性不好, 这次工作中下载,编译遇到了一些之前没遇到的问题,所以就所幸记录一下, 以便日后能快速查阅 好了, 正题开始 首先我们下载AOSP源代码开始 AOSP源代码下载 首先找到官网https://source.android.google.cn/ 进入后最上面点击获取源代…...
el-form表单实现校验
前端表单实现, rules 属性传入约定的验证规则,并将 form-Item 的 prop 属性设置为需要验证的特殊键值即可。 <el-form ref"ruleFormRef" :model"interviewForm" label-position"left" require-asterisk-position"…...
一台TrinityCore服务器客户端连接网速慢(未解决)
在FreeBSD开bhyve安装Ubuntu,然后安装了TrinityCore服务器,在只是经过一层NAT,两边都是局域网的情况下,连接速度竟然很慢,慢到600ms。 服务器安装见:尝试在FreeBSD 的jail、bhyve里安装TrinityCore-CSDN博…...
[系统运维|Xshell]宿主机无法连接上NAT网络下的虚拟机进行维护?主机ping不通NAT网络下的虚拟机,虚拟机ping的通主机!解决办法
遇到的问题:主机ping不通NAT网络下的虚拟机,虚拟机ping的通主机 服务器:Linux(虚拟机) 主机PC:Windows 虚拟机:vb,vm测试过没问题,vnc没测试不清楚 虚拟机网络࿱…...
C 语言实例 - 查找数组中最大的元素值
查找数组中最大的元素值。 实例 1 #include <stdio.h>int main() {int array[10] {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};int loop, largest;largest array[0];for(loop 1; loop < 10; loop) {if( largest < array[loop] ) largest array[loop];}printf("最大…...
MySQL之可扩展性(七)
可扩展性 通过集群扩展 理想的扩展方案时单一逻辑数据库能够存储尽可能多的数据,处理尽可能多的查询,并如期望的那样增长。许多人的第一想法就是建立一个"集群"或者"网格"来无缝处理这些事情,这样应用就无须去做太多工…...
微服务框架中Nacos的个人学习心得
微服务框架需要学习的东西很多,基本上我把它分为了五个模块: 第一:微服务技术模块 分为三个常用小模块: 1.微服务治理: 注册发现 远程调用 配置管理 网关路由 2.微服务保护: 流量控制 系统保护 熔断降级 服…...
Unity Animator 运行时修改某个动画状态的播放速度
1.添加动画参数,选择需要动态修改速度的动画状态 2.在属性面板种设置速度倍速参数...
阿里云常用的操作
阿里云常见的产品和服务 容器服务 可以查看容器日志、监控容器cpu和内存, 日志服务 SLS 可以查看所有服务的日志, Web应用防火墙 WAF 可以查看 QPS. 阿里云查看集群: 点击 “产品和服务” 中的 容器服务,可以查看 集群列表&…...
【MATLAB源码-第231期】基于matlab的polar码编码译码仿真,对比SC,SCL,BP,SCAN,SSC等译码算法误码率。
操作环境: MATLAB 2022a 1、算法描述 极化码(Polar Code) 极化码(Polar Code)是一种新型的信道编码技术,由土耳其裔教授Erdal Arıkan在2008年提出。极化码在理论上被证明能够在信道容量上达到香农极限…...
创新实训(十三) 项目开发——实现用户终止对话功能
思路分析: 如何实现用户终止AI正在进行的回答? 分析实现思路如下: 首先是在用户点击发送后,切换终止对话,点击后大模型终止对话,停止sse,不再接收后端的消息。同时因为对话记录存入数据库是后…...
基于Java+MySQL停车场车位管理系统详细设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,…...
LeetCode 53.最大子数组和(dp)
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 子数组 是数组中的一个连续部分。 示例 1: 输入:nums [-2,1,-3,4,-1,2,1,-5,4] 输出:…...
IOS17闪退问题Assertion failure in void _UIGraphicsBeginImageContextWithOptions
最近项目更新到最新版本IOS17,发现一个以前的页面突然闪退了。原来是IOS17下,这个方法 UIGraphicsBeginImageContext(CGSize size) 已经被移除,原参数如果size为0的话,会出现闪退现象。 根据说明,上述方法已经被替换…...
float8格式
产生背景 在人工智能神经元网络中,一个参数用1字节表示即可,或者说,这是个猜想:因为图像的颜色用8比特表示就够了,所以说,猜想神经元的区分度应该小于256。 数字的分配 8比特有256个码位,分为…...
云效BizDevOps上手亲测
云效BizDevOps上手亲测 什么是云效项目协作Projex配置2023业务空间原始诉求字段原始诉求工作流创建原始诉求配置2023产品空间创建主题业务原始诉求关联主题配置2023研发空间新建需求需求关联主题 与传统区别云效开发流程传统开发流程云效BizDevOps 操作体验 什么是云效 在说到…...
亚太杯赛题思路发布(中文版)
导读: 本文将继续修炼回归模型算法,并总结了一些常用的除线性回归模型之外的模型,其中包括一些单模型及集成学习器。 保序回归、多项式回归、多输出回归、多输出K近邻回归、决策树回归、多输出决策树回归、AdaBoost回归、梯度提升决策树回归…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
