算法基础--------【图论】
图论(待完善)
DFS:和回溯差不多
BFS:进while进行层序遍历
定义: 图论(Graph Theory)是研究图及其相关问题的数学理论。图由节点(顶点)和连接这些节点的边组成。图论的研究范围广泛,涉及路径、流、匹配、着色等诸多问题。
特点:
节点和边: 图论问题通常围绕节点(点)和边(线)展开,研究它们之间的关系。
图的种类: 包括无向图、有向图、加权图等不同类型的图,每种图有不同的应用场景。
算法: 常见的图论算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(如Dijkstra算法、Floyd-Warshall算法)、最小生成树算法(如Kruskal算法、Prim算法)等。(Dijkstra华子暑期实习笔试考了)
适用范围: 广泛用于网络分析、路径规划、资源分配等领域,如社交网络、交通系统、计算机网络等。(网络分析,路径规划这个真的很爱考)
示例: 最短路径问题(如寻找城市之间的最短路线)是一个经典的图论问题,通常用Dijkstra算法或Bellman-Ford算法解决。
【200】岛屿数量
要么用DFS的思想,要么用BFS层序遍历的思想
DFS:节点有四个方向,都遍历一遍,我写的逻辑是先下右上左。
dfs方法: 设目前指针指向一个岛屿中的某一点 (i, j),寻找包括此点的岛屿边界。
从 (i, j) 向此点的上下左右 (i+1,j),(i-1,j),(i,j+1),(i,j-1) 做深度搜索。
终止条件:
(i, j) 越过矩阵边界;
grid[i][j] == 0,代表此分支已越过岛屿边界。
搜索岛屿的同时,执行 grid[i][j] = ‘0’,即将岛屿所有节点删除,以免之后重复搜索相同岛屿。
主循环:
遍历整个矩阵,当遇到 grid[i][j] == ‘1’ 时,从此点开始做深度优先搜索 dfs,岛屿数 count + 1 且在深度优先搜索中删除此岛屿。
最终返回岛屿数 count 即可。
DFS:
class Solution {
public:int numIslands(vector<vector<char>>& grid) {if(grid.size() == 0 || grid[0].size() == 0)return 0;int m = grid.size(),n = grid[0].size();vector<vector<int>> vec;int res =0;for(int i =0;i<m;i++){vector<int> tempvec;for(int j=0;j<n;j++){ int tmp = grid[i][j]-'0';tempvec.push_back(tmp);//转化成int类型的}vec.push_back(tempvec);} for(int i =0;i<m;i++){for(int j=0;j<n;j++){if( vec[i][j] == 1){dfs(vec,i,j);//dfs的次数就是岛屿的数量res++;}}} return res;}
private:void dfs(vector<vector<int>>& vec,int i, int j){if(i<0 || j<0 || i>vec.size()-1 || j>vec[0].size()-1)return;cout<<"(i,j) = "<<i<<j<<","<<vec[i][j]<<endl;if(vec[i][j] != 1)return;vec[i][j] =-1;//标记dfs(vec,i+1,j);dfs(vec,i,j+1);dfs(vec,i-1,j);dfs(vec,i,j-1);}
};
int main() {Solution s;vector<vector<char>> grid = {{'1','1','1','1','0'},{'1','1','0','1','0'},{'1','1','0','0','0'},{'0','0','0','0','0'}};s.numIslands(grid);system("pause");return 0;
}
BFS:
借用一个队列 queue,判断队列首部节点 (i, j) 是否未越界且为 1:
若是则置零(删除岛屿节点),并将此节点上下左右节点 (i+1,j),(i-1,j),(i,j+1),(i,j-1) 加入队列;
若不是则跳过此节点;
循环 pop 队列首节点,直到整个队列为空,此时已经遍历完此岛屿。
class Solution {
public:int numIslands(vector<vector<char>>& grid) {if (grid.empty() || grid[0].empty()) return 0;int m = grid.size(), n = grid[0].size();int res = 0;queue<pair<int, int>> q;for (int i = 0; i < m; ++i) {for (int j = 0; j < n; ++j) {if (grid[i][j] == '1') {q.push({i,j});grid[i][j] = '0'; // 标记为已访问 加入就标记res++;//第一层更新while (!q.empty()) {//BFS遍历int x = q.front().first, y = q.front().second;q.pop();for (const auto& dir : dirs) {int nx = x + dir.first, ny = y + dir.second;if (nx >= 0 && nx < m && ny >= 0 && ny < n && grid[nx][ny] == '1') {q.push({nx,ny});grid[nx][ny] = '0'; // 标记为已访问}}}}}}return res;}
private:vector<pair<int, int>> dirs{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};};
【994】腐烂的橘子
在给定的 m x n
网格 grid
中,每个单元格可以有以下三个值之一:
- 值
0
代表空单元格; - 值
1
代表新鲜橘子; - 值
2
代表腐烂的橘子。
每分钟,腐烂的橘子 周围 4 个方向上相邻 的新鲜橘子都会腐烂。
返回 直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。如果不可能,返回 -1
。
示例 1:
输入:grid = [[2,1,1],[1,1,0],[0,1,1]]
输出:4
class Solution {
public:int orangesRotting(vector<vector<int>>& grid) {if(grid.size() == 0 ||grid[0].size() ==0)return -1;int m = grid.size();int n = grid[0].size();int min = 0;//分钟数int fresh = 0;//新鲜橘子queue<pair<int,int>> q;//存储腐烂的橘子for(int i =0;i<m;i++){for(int j =0;j<n;j++){if(grid[i][j] == 2){q.push({i,j});}else if(grid[i][j] == 1){//统计新鲜橘子fresh++;}}}// if(q.empty() || fresh==0 )return -1;//没有腐烂的橘子 没有新鲜的橘子vector<pair<int,int>> dirs = {{1,0},{0,1},{0,-1},{-1,0}};while(!q.empty()){//每一层int qsize = q.size();//有n个烂橘子bool flag = false;for(int i =0;i<qsize;i++){//遍历这n个烂橘子int x = q.front().first;int y = q.front().second;q.pop();for(auto dir:dirs){int nx = dir.first+x;int ny = dir.second+y;if(nx >=0 && nx<m && ny >=0 && ny<n && grid[nx][ny]==1){q.push({nx,ny});grid[nx][ny] = 2;fresh--;//到最后要没有新鲜橘子才结束flag = 1;//有新鲜橘子就标记}}}//一层就要++if(flag)min++;//有新鲜橘子才++}return fresh? -1:min;}
};
总结:腐烂的橘子是以各个腐烂的橘子为头结点开始入队遍历的,而岛屿数量是以有无1直接入队遍历。
相关文章:

算法基础--------【图论】
图论(待完善) DFS:和回溯差不多 BFS:进while进行层序遍历 定义: 图论(Graph Theory)是研究图及其相关问题的数学理论。图由节点(顶点)和连接这些节点的边组成。图论的研究范围广泛,涉及路径、…...
x86和x64架构的区别及应用
x86和x64架构的区别及应用 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在计算机硬件和软件领域,x86和x64是两种常见的处理器架构。它们在计算能…...

2024年度总结:不可错过的隧道IP网站评估推荐
随着网络技术的飞速发展,隧道IP服务成为了许多企业和个人在进行网络活动时的得力助手。作为专业的测评团队,我们经过一整年的深入研究和测试,为大家带来了三款备受瞩目的隧道IP网站推荐——品易HTTP、极光HTTP和一G代理。接下来,我…...

Linux下VSCode的安装和基本使用
应用场景:嵌入式开发。 基本只需要良好的编辑环境,能支持文件搜索和跳转,就挺OK的。 之所以要在Linux下安装,是因为在WIN11上安装后,搜索功能基本废了,咋弄都弄不好,又不方便重装win系统&#x…...

C# 实现websocket双向通信
🎈个人主页:靓仔很忙i 💻B 站主页:👉B站👈 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:C# 🤝希望本文对您有所裨益,如有不足之处ÿ…...

Spring Boot结合FFmpeg实现视频会议系统视频流处理与优化
在构建高效稳定的视频会议系统时,实时视频流的处理和优化是开发者面临的核心挑战之一。这不仅仅是简单的视频数据传输,更涉及到一系列复杂的技术问题,需要我们深入分析和有效解决。 高并发与实时性要求: 视频会议系统通常需要支持多人同时进行视频通话,这就意味着系统需要…...

扫扫地,搞搞卫生 ≠ 车间5S管理
在制造业的日常运营中,车间管理是一项至关重要的工作,它直接关系到生产效率、产品质量以及员工的工作环境。然而,许多人常常将简单的“扫扫地,搞搞卫生”等同于车间5S管理,这种误解不仅可能导致管理效果不佳࿰…...
ES(笔记)
es就是json请求体代替字符串查询 dsl查询和过滤,一个模糊查询,一个非模糊查询 must,should 做模糊查询的,里面都是match,根据查询内容进行匹配,filter过滤,term词元查询,就是等值查…...

开箱即用的fastposter海报生成器
什么是 fastposter ? fastposter 海报生成器是一款快速开发海报的工具。只需上传一张背景图,在对应的位置放上组件(文字、图片、二维码、头像)即可生成海报。 点击代码直接生成各种语言 SDK 的调用代码,方便快速开发。 软件特性&…...

力扣每日一题 6/28 动态规划/数组
博客主页:誓则盟约系列专栏:IT竞赛 专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 2742.给墙壁刷油漆【困难】 题目: 给你两个长度为 n 下标从 0…...

[数据集][目标检测]游泳者溺水检测数据集VOC+YOLO格式8275张4类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):8275 标注数量(xml文件个数):8275 标注数量(txt文件个数):8275 标注…...

若依 ruoyi 分离版 vue 简单的行内编辑实现
需要实现的效果:双击文本 - 修改文本 - 保存修改。 原码:仅文本显示文字内容 <el-table-column label"商品" align"center" prop"goodsName" width"200" v-if"columns[1].visible" /> 实现…...
【工具】API文档生成DocFX
文章目录 总述示例第一步:安装 DocFX第二步:初始化项目第三步:编辑配置文件第四步:编写文档第五步:生成文档第六步:预览文档第七步:部署文档 总述 DocFX 是一个由微软开发的开源文档生成工具&a…...
在 JavaScript 中处理异步操作和临时事件处理程序
关键技术和设计总结 使用 Promise 和 then 进行异步操作: 我们通过使用 Promise 来处理异步操作,确保操作按顺序执行。在 getReportListByCurrentTime 函数中,返回一个 Promise 对象,保证在数据加载完成后调用 resolve,以便可以在…...
[Cocos Creator] v3.8开发知识点记录(持续更新)
问题:从 cc 里找不到宏定义 CC_PREVIEW 等。 解决方案:找不到就自己定义,将 declare const CC_PREVIEW; 添加到需要的ts文件里。参考:creator3d 找不到宏定义如 CC_EDITOR,CC_PREVIEW,CC_JSB - Creator 3.x…...
Excel_VBA编程
在Excel中,VBA(Visual Basic for Applications)是一种强大的工具,可以用来自动化各种任务。下面介绍一些常用的VBA函数和程序结构: 常用函数 MsgBox:用于显示消息框。 MsgBox "Hello, World!"In…...
Java中的Path类使用详解及最佳实践
Java中的Path类使用详解及最佳实践 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨Java中的Path类,这是Java标准库中用于操作文件…...
生成和查看预定义宏
参考下面的指令 arm-none-eabi-gcc -marcharmv7e-m -dM -E - < /dev/null | grep SYNC这个指令是用来生成和查看预定义宏(macros)的一种方法。让我们逐步分解和解释这个命令的各个部分: arm-none-eabi-gcc: 这是 ARM 架构下的交叉编译器…...
Redis 7.x 系列【12】数据类型之基数统计(HyperLogLog)
有道无术,术尚可求,有术无道,止于术。 本系列Redis 版本 7.2.5 源码地址:https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 概述2. 常用命令2.1 PFADD2.2 PFCOUNT2.3 PFMERGE 3. 应用场景 1. 概述 基数表示数…...

开源大模型RAG企业本地知识库问答机器人-ChatWiki
ChatWiki ChatWiki是一款开源的知识库 AI 问答系统。系统基于大语言模型(LLM )和检索增强生成(RAG)技术构建,提供开箱即用的数据处理、模型调用等能力,可以帮助企业快速搭建自己的知识库 AI 问答系统。 开…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...