当前位置: 首页 > news >正文

逻辑回归梯度推导

逻辑回归是一种广泛使用的分类算法,用于估计一个事件发生的概率。它是线性回归的扩展,通过sigmoid函数将线性回归的输出映射到[0, 1]区间,从而用于分类任务。
在逻辑回归中,我们使用对数似然损失函数(log-likelihood loss function)来衡量模型预测值与真实值之间的差异。我们的目标是最小化这个损失函数,以找到最优的模型参数。
假设我们有以下符号:

  • h θ ( x ) h_{\theta}(x) hθ(x) 是模型预测的概率, h θ ( x ) = 1 1 + e − θ T x h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} hθ(x)=1+eθTx1
  • m m m 是训练样本的数量。
  • y y y 是实际输出标签,取值为0或1。
  • θ \theta θ 是模型参数。
  • x x x 是单个训练样本的特征向量。

对数似然损失函数为(也可以说是交叉熵损失,来源于KL散度的后一项):
L ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] L(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))] L(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

为了找到最小化损失函数的参数 θ \theta θ,我们需要计算损失函数关 $\theta $ 的梯度。以下是梯度计算的过程:

对 $ L(\theta) $ 求关于$ \theta_j $ 的偏导数:
∂ ∂ θ j L ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) ∂ ∂ θ j log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ∂ ∂ θ j log ⁡ ( 1 − h θ ( x ( i ) ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) h θ ( x ( i ) ) ∂ ∂ θ j h θ ( x ( i ) ) − 1 − y ( i ) 1 − h θ ( x ( i ) ) ∂ ∂ θ j h θ ( x ( i ) ) ] = − 1 m ∑ i = 1 m [ y ( i ) 1 h θ ( x ( i ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ] ∂ ∂ θ j h θ ( x ( i ) ) \begin{align*} \frac{\partial}{\partial \theta_j} L(\theta) &= -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \frac{\partial}{\partial \theta_j} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \frac{\partial}{\partial \theta_j} \log(1 - h_{\theta}(x^{(i)})) \right] \\ &= -\frac{1}{m} \sum_{i=1}^{m} \left[ \frac{y^{(i)}}{h_{\theta}(x^{(i)})} \frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)}) - \frac{1 - y^{(i)}}{1 - h_{\theta}(x^{(i)})} \frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)}) \right] \\ &= -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} - (1 - y^{(i)}) \frac{1}{1 - h_{\theta}(x^{(i)})} \right] \frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)}) \end{align*} θjL(θ)=m1i=1m[y(i)θjlog(hθ(x(i)))+(1y(i))θjlog(1hθ(x(i)))]=m1i=1m[hθ(x(i))y(i)θjhθ(x(i))1hθ(x(i))1y(i)θjhθ(x(i))]=m1i=1m[y(i)hθ(x(i))1(1y(i))1hθ(x(i))1]θjhθ(x(i))

计算 h θ ( x ) h_{\theta}(x) hθ(x) 关于 θ j \theta _{j} θj的偏导数:
∂ ∂ θ j h θ ( x ) = ∂ ∂ θ j ( 1 1 + e − θ T x ) = e − θ T x ( 1 + e − θ T x ) 2 ∂ ∂ θ j ( − θ T x ) = e − θ T x ( 1 + e − θ T x ) 2 ( − x j ) = h θ ( x ) ( 1 − h θ ( x ) ) ( − x j ) \begin{align*} \frac{\partial}{\partial \theta_j} h_{\theta}(x) &= \frac{\partial}{\partial \theta_j} \left( \frac{1}{1 + e^{-\theta^T x}} \right) \\ &= \frac{e^{-\theta^T x}}{(1 + e^{-\theta^T x})^2} \frac{\partial}{\partial \theta_j} (-\theta^T x) \\ &= \frac{e^{-\theta^T x}}{(1 + e^{-\theta^T x})^2} (-x_j) \\ &= h_{\theta}(x) (1 - h_{\theta}(x)) (-x_j) \\ \end{align*} θjhθ(x)=θj(1+eθTx1)=(1+eθTx)2eθTxθj(θTx)=(1+eθTx)2eθTx(xj)=hθ(x)(1hθ(x))(xj)
将 ( ∂ ∂ θ j h θ ( x ) \frac{\partial}{\partial \theta_j} h_{\theta}(x) θjhθ(x) ) 的结果代入梯度公式中:
∂ ∂ θ j L ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) 1 h θ ( x ( i ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ] h θ ( x ) ( 1 − h θ ( x ) ) ( − x j ) = − 1 m ∑ i = 1 m [ y ( i ) ( 1 − h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) h θ ( x ( i ) ) ] ( − x j ( i ) ) = − 1 m ∑ i = 1 m [ y ( i ) − h θ ( x ( i ) ) ] ( − x j ( i ) ) \begin{align*} \frac{\partial}{\partial \theta_j} L(\theta) &= -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} - (1 - y^{(i)}) \frac{1}{1 - h_{\theta}(x^{(i)})} \right]h_{\theta}(x) (1 - h_{\theta}(x)) (-x_j) \\ &= -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} (1 - h_{\theta}(x^{(i)})) - (1 - y^{(i)}) h_{\theta}(x^{(i)}) \right] (-x_j^{(i)}) \\ &= -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} - h_{\theta}(x^{(i)}) \right] (-x_j^{(i)}) \end{align*} θjL(θ)=m1i=1m[y(i)hθ(x(i))1(1y(i))1hθ(x(i))1]hθ(x)(1hθ(x))(xj)=m1i=1m[y(i)(1hθ(x(i)))(1y(i))hθ(x(i))](xj(i))=m1i=1m[y(i)hθ(x(i))](xj(i))
因此,逻辑回归损失函数 L ( θ ) L(\theta) L(θ) 关于参数 θ j \theta_j θj的梯度是:
∂ ∂ θ j L ( θ ) = − 1 m ∑ i = 1 m [ h θ ( x ( i ) ) − y ( i ) ] x j ( i ) \frac{\partial}{\partial \theta_j} L(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[ h_{\theta}(x^{(i)}) - y^{(i)} \right] x_j^{(i)} θjL(θ)=m1i=1m[hθ(x(i))y(i)]xj(i)

​ 这个梯度表达式告诉我们,对于每个参数 θ j \theta_j θj,我们需要计算模型预测 h θ ( x ( i ) ) h_{\theta}(x^{(i)}) hθ(x(i)) 和实际标签 y ( i ) y^{(i)} y(i) 之间的差异,然后将这个差异乘以特征 x j ( i ) x_j^{(i)} xj(i),最后对所有训练样本求和并除以样本数量 m m m。这个梯度用于在优化过程中更新参数 θ j \theta_j θj,以最小化损失函数。

相关文章:

逻辑回归梯度推导

逻辑回归是一种广泛使用的分类算法,用于估计一个事件发生的概率。它是线性回归的扩展,通过sigmoid函数将线性回归的输出映射到[0, 1]区间,从而用于分类任务。 在逻辑回归中,我们使用对数似然损失函数(log-likelihood l…...

Python 使用函数输出一个整数的逆序数

在Python中,你可以定义一个函数来输出一个整数的逆序数。这里有一个简单的实现方法: def reverse_integer(x):# 检查输入是否为整数if not isinstance(x, int):raise ValueError("Input must be an integer")# 将整数转换为字符串&#xff0c…...

【Linux】Wmware Esxi磁盘扩容

目录 一、概述 1.1 磁盘分区概念 1.2 LVM概念 二、扩容步骤 二、报错 一、概述 1.1 磁盘分区概念 在 Linux 中,每一个硬件设备都映射到一个系统的文件,对于硬盘、光驱等 IDE 或 SCSI 设备也不例外。Linux把各种 IDE 设备分配了一个由 hd 前缀组成的文…...

树莓派4B_OpenCv学习笔记15:OpenCv定位物体实时坐标

今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi) 本人所用树莓派4B 装载的系统与版本如下: 版本可用命令 (lsb_release -a) 查询: Opencv 版本是4.5.1: 今日学习 OpenCv定位物体实时位置,代码来源是…...

MySQL之如何定位慢查询

1、如何定位慢查询 1.1、使用开源工具 调试工具:Arthas 运维工具:Promethuss、Skywalking 1.2、MySQL自带慢日志 慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒&#x…...

Open3D 删除点云中重复的点

目录 一、算法原理1、重叠点2、主要函数二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、重叠点 原始点云克隆一份   构造重叠区域   合并点云获得重叠点 2、主要…...

填报志愿选专业是兴趣重要还是前景重要?

进行专业评估,找到一个适合自己的专业是一件非常困难的事情。在进行专业选择时,身上理想化色彩非常严重的人,会全然不顾及他人的劝阻,义无反顾的以兴趣为主,选择自己热爱的专业。一些较多考虑他人建议,能听…...

python开发基础——day9 函数基础与函数参数

一、初识函数(function) 编程函数!数学函数,里面的是逻辑,功能,而不是套公式 编程函数的作用实现特定操作的一段代码 你现在请客,每个人都点同样的一份吃的,请100个人 1.薯条 2.上校鸡块 3.可乐 那…...

STM32——使用TIM输出比较产生PWM波形控制舵机转角

一、输出比较简介: 只有高级定时器和通用寄存器才有输入捕获/输出比较电路,他们有四个CCR(捕获/比较寄存器),共用一个CNT(计数器),而输出比较功能是用来输出PWM波形的。 红圈部分…...

第十五章 集合(set)(Python)

文章目录 前言一、集合 前言 集合(set)是一个无序的不重复元素序列。 一、集合 set {1, 2, 3, 4}...

面试-javaIO机制

1.BIO BIO:是传统的javaIO以及部分java.net下部分接口和类。例如,socket,http等,因为网络通信同样是IO行为。传统IO基于字节流和字符流进行操作。提供了我们最熟悉的IO功能,譬如基于字节流的InputStream 和OutputStream.基于字符流…...

在.NET Core中,config和ConfigureServices的区别和作用

在.NET Core中,config和ConfigureServices是两个不同的概念,它们在应用程序的启动和配置过程中扮演着不同的角色。 ConfigureServices:这是ASP.NET Core应用程序中的一个方法,位于Startup类的内部。它的作用是配置依赖注入(DI)容器…...

App Inventor 2 如何实现多个定时功能?

1、可以使用多个“计时器”组件。 2、也可以用一个计时器,定时一分钟。也就是一分钟就会触发一次事件执行,定义一个全局数字变量,在事件中递增,用逻辑判断这个变量的值即可完成多个想要定时的任务(о∀о) 代码块请参考&#xf…...

技术驱动的音乐变革:AI带来的产业重塑

📑引言 近一个月来,随着几款音乐大模型的轮番上线,AI在音乐产业的角色迅速扩大。这些模型不仅将音乐创作的门槛降至前所未有的低点,还引发了一场关于AI是否会彻底颠覆音乐行业的激烈讨论。从初期的兴奋到现在的理性审视&#xff0…...

重生之我要学后端0--HTTP协议和RESTful APIs

http和RESTful APIs HTTP协议RESTful APIs设计RESTful API设计实例 HTTP协议 HTTP(超文本传输协议)是用于分布式、协作式和超媒体信息系统的应用层协议。它是网页数据通讯的基础。工作原理简述如下: 客户端请求(Request&#xf…...

深度之眼(二十八)——神经网络基础知识(三)-卷积神经网络

文章目录 一、前言二、卷积操作2.1 填充(padding)2.2 步长2.3 输出特征图尺寸计算2.4 多通道卷积 三、池化操作四、Lenet-5及CNN结构进化史4.1 Lenet-5 一、前言 卷积神经网络–AlexNet(最牛)-2012 Lenet-5-大规模商用(1989) 二、…...

AI Infra简单记录

向量数据库的作用 1. 在AI大模型训练过程中,向量数据库可以有效提升数据检索、特征提取等任务的效率。 2、在AI大模型推理过程中,向量数据库为大模型提供外挂知识库,提升模型时效性与准确性,提供缓存能力,减少调用开…...

三英战吕布 | 第5集 | 温酒斩华雄 | 竖子不足与谋 | 三国演义 | 逐鹿群雄

🙋大家好!我是毛毛张! 🌈个人首页: 神马都会亿点点的毛毛张 📌这篇博客分享的是《三国演义》文学剧本第Ⅰ部分《群雄逐鹿》的第5️⃣集《三英战吕布》的经典语句和文学剧本全集台词 文章目录 1.经典语句2.文学剧本台…...

【C语言】自定义类型:结构体

目录 1. 结构体类型的声明 1.1. 结构的一般声明 1.2. 结构的特殊声明 2. 结构体变量的创建和初始化 3. 结构体的自引用 4. 结构体内存对齐 4.1. 对其规则(面试考点) 4.2. 为什么存在内存对齐? 4.2.1. 平台原因(移植…...

算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 决策树是一种简单直观的机器学习算法,它广泛应用于分类和回归问题中。它的核心思想是将复杂的决策过程分解成一系列简单的决…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...