深度学习11-20
1.神经元的个数对结果的影响:
(http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

(1)神经元3个的时候


(2)神经元是10个的时候

神经元个数越多,可能会产生过拟合现象。
2.正则化和激活函数
(1)隐层1的神经元增加一个,相当于输入层输入一组参数

(2)正则化的作用
1)惩罚力度对结果的影响
惩罚力度=训练的loss+r(w)
惩罚力度小的时候,模型奇形怪状。
随着浪荡增大,测试集的效果更好

2)神经元,参数个数对结果的影响
64,128,256,512
(3)激活函数
sigmoid函数当梯度为0(斜率为0)的时候,不进行更新和传播,即梯度消失。

所以提出reLu函数,变量x<0,直接为0.
3.标准化
(1)数据预处理
把点中心化:把实际坐标值-均值。放缩:除以标准差

(2)参数初始化
(d,h)矩阵的行和列数

(3)Drop-out:在神经网络的训练过程中,在某一次的迭代中,每一层随机的按照固定的比例杀死一些神经元,不参与后序的更新与传播。杀死的神经元可能会在其他迭代中派上用场。Drop-out是个比例。防止神经网络训练过程太复杂。测试阶段没必要杀死。
过拟合是神经网络的一个大问题。

(4) 文字作填充、图像作标准化

根据loss值反向传播求出w1,w2,w3
过拟合解决方法:drop-out或者relu函数
5.卷积神经网络应用领域
(1)

(2)应用领域:检测任务、分类与检索、超分辨率重构、医学任务(ocr的字体识别)、无人驾驶、人脸识别






6.卷积网络与传统网络的区别
-
NN(神经网络)-》CNN(卷积神经网络)

-
cnn处理三维数据(hwc)

-
卷积层提取特征,池化层压缩特征,全连接层用一组权重参数连接起来
5.例子,x对应输入数据,w代表权重参数,蓝色矩阵下面的脚标就代表权重参数。最后的结果总和对应的是绿色矩阵里面的参数。 这个12也代表粉红色的那个331小矩阵的值为12.

也就是内积计算

6.图像颜色通道
(1)图像颜色通道 :R通道、G通道、B通道


(2)输入数据第三个维度c为3的话,过滤器filter的第三个维度也等于3.
如果过滤器(k,l,w)=(4,4,3),所以原始输入的数据(a,b,c)里面(a,b)选取也要(4,4)这样才能一一对应。



将R+G+B的值相加 sum=0+2+0=2
最后加上偏置参数b
sum+b=2+1=3
所以输出的绿色第一个矩阵是3
(3)得到特征图表示
第三个维度指的是深度,深度也就是特征图的个数
7.步长与卷积核大小对结果的影响

(1)步长越大是粗粒度的,提取的特征越少。


e.g.6:6代表的是6个过滤器。
e.g.10: 10代表的是10个过滤器。

(2)图像任务一般是步长为1的(然后图像中h,w是一样的),提取的特征比较多,但是时间效率低。
(3)卷积核越小越细粒度的提取(一般最小的卷积核是3*3)
(4)边缘填充:越往边界的点,使用的次数越小;越往中间的点,使用的次数越多。
0只是做一下扩充,对最终结果没有影响。填充1圈0也可以,填充2圈0也可以,看你自己。
8.特征图尺寸计算与参数共享
(1)H2:代表结果;H1代表原始的输入;F代表过滤器的尺寸;2P:代表H长度是两边都要有0




(2)权重参数,也就是每个区域选择相同的卷积核计算,也就是权重参数。

相关文章:
深度学习11-20
1.神经元的个数对结果的影响: (http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html) (1)神经元3个的时候 (2)神经元是10个的时候 神经元个数越多,可能会产生…...
耐磨材料元宇宙:探索未来科技的无限可能
随着科技的不断发展,我们正逐渐进入一个全新的时代——元宇宙。在这个虚拟世界中,人们可以自由地创造、探索和交流。而在元宇宙中,耐磨材料作为一种重要的基础资源,将为我们的虚拟世界带来更多的可能性。 一、耐磨材料在元宇宙中…...
力扣2874.有序三元组中的最大值 II
力扣2874.有序三元组中的最大值 II 遍历j –> 找j左边最大数 和右边最大数 class Solution {public:long long maximumTripletValue(vector<int>& nums) {int n nums.size();vector<int> suf_max(n1,0);//右边最大数for(int in-1;i>1;i--){suf_max[i…...
Linux-笔记 嵌入式gdb远程调试
目录 前言 实现 1、内核配置 2、GDB移植 3、准备调试程序 4、开始调试 前言 gdb调试器是基于命令行的GNU项目调试器,通过gdb工具我们可以实现许多调试手段,同时gdb支持多种语言,兼容性很强。 在桌面 Linux 系统(如 Ubuntu、Cent…...
观测云产品更新 | Pipelines、智能监控、日志数据访问等
观测云更新 Pipelines 1、Pipelines:支持选择中心 Pipeline 执行脚本。 2、付费计划与账单:新增中心 Pipeline 计费项,统计所有命中中心 Pipeline 处理的原始日志的数据大小。 监控 1、通知对象管理:新增权限控制。配置操作权…...
docker 拉取不到镜像的问题:拉取超时
如果每次拉取的时候遇到超时 error pulling image configuration: download failed after attempts6: dial tcp 31.13.94.10:443: i/o timeout 解决方法如下: 设置国内镜像源: sudo mkdir -p /etc/docker 然后 sudo gedit /etc/docker/daemon.json 或…...
防火墙双机热备
防火墙双机热备 随着移动办公、网上购物、即时通讯、互联网金融、互联网教育等业务蓬勃发展,网络承载的业务越来越多,越来越重要。所以如何保证网络的不间断传输成为网络发展过程中急需解决的一个问题。 防火墙部署在企业网络出口处,内外网之…...
30分钟学习如何搭建扩散模型的运行环境【pytorch版】【B站视频教程】【解决环境搭建问题】
30分钟学习如何搭建扩散模型的运行环境【B站视频教程】【解决环境搭建问题】 动手学习扩散模型 点击以下链接即可进入学习: B站视频教程附赠:环境配置安装(配套讲解文档) 视频 讲解主要内容 一、环境设置 1.本地安装…...
使用Java连接数据库并且执行数据库操作和创建用户登录图形化界面(1)
创建一个Java程序,建立与本机mysql服务器上student数据库的连接,实现在tb_student学生表上插入一条学生信息:学号21540118,姓名王五,性别男,出生日期2003-12-10,所在学院5。 使用JDBC连接数据库…...
HarmonyOS Next开发学习手册——弹性布局 (Flex)
概述 弹性布局( Flex )提供更加有效的方式对容器中的子元素进行排列、对齐和分配剩余空间。常用于页面头部导航栏的均匀分布、页面框架的搭建、多行数据的排列等。 容器默认存在主轴与交叉轴,子元素默认沿主轴排列,子元素在主轴…...
centOS7网络配置_NAT模式设置
第一步:查看电脑网卡 nat模式对应本地网卡的VMnet 8 ,查看对应的IP地址。 第二步:虚拟网络编辑器 打开VMWare,编辑--虚拟网络编辑器,整个都默认设置好了,只需要查看对应的DHCP设置中对应的IP的起始&#…...
喜报 | 极限科技获得北京市“创新型”中小企业资格认证
2024年6月20日,北京市经济和信息化局正式发布《关于对2024年度4月份北京市创新型中小企业名单进行公告的通知》,极限数据(北京)科技有限公司凭借其出色的创新能力和卓越的企业实力,成功获得“北京市创新型中小企业”的…...
整合Spring Boot和Pulsar实现可扩展的消息处理
整合Spring Boot和Pulsar实现可扩展的消息处理 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在现代分布式系统中,消息队列是实现异步通信和解耦…...
如何给WPS、Word、PPT等办公三件套添加收费字体---方正仿宋GBK
1.先下载需要的字体。 下载字体的网站比较多,基本上都是免费的。随便在网上搜索一个就可以了,下面是下载的链接。 方正仿宋GBK字体免费下载和在线预览-字体天下 www.fonts.net.cn/font-31602268591.html 注意:切记不要商用,以免…...
《重构》读书笔记【第1章 重构,第一个示例,第2章 重构原则】
文章目录 第1章 重构,第一个示例1.1 重构前1.2 重构后 第2章 重构原则2.1 何谓重构2.2 两顶帽子2.3 为何重构2.4 何时重构2.5 重构和开发过程 第1章 重构,第一个示例 我这里使用的IDE是IntelliJ IDEA 1.1 重构前 plays.js export const plays {&quo…...
学会整理电脑,基于小白用户(无关硬件升级)
如果你不想进行硬件升级,就要学会进行整理维护电脑 基于小白用户,每一个操作点我都会在后续整理出流程,软件推荐会选择占用小且实用的软件 主要从三个角度去讨论【如果有新的内容我会随时修改,也希望有补充告诉我,我…...
使用ioDraw,AI绘图只需几秒钟!
只需几秒钟,就能将文字或图片转化为精准的思维导图、流程图、折线图、柱状图、饼图等各种图表! 思维导图 思维导图工具使用入口 文字转思维导图 将文本大纲或想法转换成可视化的思维导图,以组织和结构化您的想法。 图片转思维导图 从现有…...
Websocket解析及用法(封装一个通用订阅发布主题的webSocket类)
1、什么是WebSocket? websocket的目标是通过一个长连接实现与服务器全双工,双向的通信。是一种在单个TCP连接上进行全双工通信的协议,使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。在 js中创建websocket…...
Foxit Reader(福昕阅读器)详细安装和使用教程
第一部分:Foxit Reader简介和基本信息 1.1 什么是Foxit Reader? Foxit Reader(福昕阅读器)是一款功能强大的PDF阅读和编辑软件,以其快速、轻巧和丰富的功能而闻名。它不仅支持常规的PDF阅读功能,还提供了…...
c++静态成员变量和静态成员函数
1)C入门级小知识,分享给将要学习或者正在学习C开发的同学。 2)内容属于原创,若转载,请说明出处。 3)提供相关问题有偿答疑和支持。 我们可以使用 static 关键字来把类成员定义为静态的。当我们声明类的成…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...
如何在Windows本机安装Python并确保与Python.NET兼容
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
