Java web应用性能分析之【prometheus监控K8s指标说明】
常规k8s的监控指标
单独
1、集群维度
- 集群状态
- 集群节点数
- 节点状态(正常、不可达、未知)
- 节点的资源使用率(CPU、内存、IO等)
2、应用维度
-
应用响应时间
-
应用的错误率
-
应用的请求量
3、系统和集群组件维度
- API服务器状态
- 控制器状态
- etcd状态
常用的 Prometheus Operator 指标
常用监控 Kubernetes 性能的 Prometheus Operator 指标 如下:
- Kubernetes 资源相关
- Kubernetes 存储相关
- kubernetes system 相关
- APIServer 相关
- kubelet 相关
- 集群组件
- 应用相关
- 节点相关
- Etcd 相关
- CoreDNS 相关
1、集群维度
K8s集群指标可以按维度分为节点指标和容器pod指标。
-
节点维度指标包括节点CPU使用率,节点内存使用率等
-
pod维度指标包括pod CPU 使用率等
1.1 Node监控
1、内存指标
node_memory_MemTotal_bytes: Node总内存大小node_memory_MemAvailable_bytes:Node剩余可用内存node_memory_MemAvailable_bytes :从应用程序的角度看到的可用内存;linux 内核为了提升磁盘操作的性能,会消耗一部分内存去缓存磁盘数据。就是buffer和cache,对于内核来说 buffer和cache 都属于已经被使用的内存,只是应用程序需要内存时,如果没有足够的free内存可用,内核就会从buffer和cache中回收内存满足应用程序的请求。所以从应用程序角度来说avaliable = free + buffer +cache, 不过这只是一个理想的公式,实际中的数据会有较大偏差node已用的内存大小计算公式:node_memory_MemTotal_bytes - node_memory_MemAvailable_bytes理想情况下节点内存使用率可以 这样计算:(1-(node_memory_Buffers_bytes+node_memory_Cached_bytes+node_memory_MemFree_bytes)/node_memory_MemTotal_bytes)*100
或者使用以下计算方式:(1-node_memory_MemAvailable_bytes/node_memory_MemTotal_bytes)*100

2、CPU
node_load1:CPU1分钟负载node_load5:CPU5分钟负载node_load15:CPU15分钟负载node_cpu_seconds_total (counter类型指标,用来统计CPU每种模式下所花费的时间,是CPU时间片的一个累积值)CPU使用率计算公式:1-avg(irate(node_cpu_seconds_total{mode="idle"}[30m])) by (instance)
如果需要计算node节点CPU使用率:CPU使用率是cpu除空闲(idle)状态之外的其他所有CPU状态的时间总和除以总的CPU时间得到的结果。即:(1-sum(rate(node_cpu_seconds_total{mode="idle"}[1m]))by(instance)/sum(rate(node_cpu_seconds_total[1m]))by(instance))*100

如果需要采集节点vcpu指标信息:例如4u的一个节点,监控每个u的使用率,可参考公式:(1-sum(rate(node_cpu_seconds_total{mode="idle"}[1m]))by(instance,cpu)/sum(rate(node_cpu_seconds_total[1m]))by(instance,cpu))*100

3、分区使用
nodenode_filesystem_size_bytes:各个分区总空间node_filesystem_avail_bytes:各分区剩余空间
4、磁盘I/O
node_disk_io_time_seconds_total:磁盘I/O操作耗费时间每秒磁盘读取速度:
irate(node_disk_writes_completed_total[30m])每秒磁盘写入速度:
irate(node_disk_written_bytes_total[30m])每秒磁盘I/O操作耗费时间计算公式:
irate(node_disk_io_time_seconds_total[30m])每次I/O读取耗时计算公式:
irate(node_disk_read_time_seconds_total[30m]) / irate(node_disk_reads_completed_total[30m])每次I/O写入耗时计算公式:
irate(node_disk_write_time_seconds_total[30m]) / irate(node_disk_writes_completed_total[30m])磁盘IO表示磁盘的输入和输出(向磁盘写入数据,从磁盘读取数据)node_disk_reads_completed_total:读IOnode_disk_writes_completed_total :写IOsumby(instance)(rate(node_disk_reads_completed_total[5m]))sumby(instance)(rate(node_disk_writes_completed_total[5m]))


节点磁盘监控,主要说明下磁盘空间使用率相关指标,磁盘使用率通常是指挂载在某个目录的磁盘分区的使用率。一个磁盘分区会由对应的文件系统进行管理,通过该文件系统就能获取到该分区的使用情况。node_filesystem_avail_bytes 磁盘可用空间

node_filesystem_size_bytes 磁盘总空间

K8s集群中磁盘使用率可以这样计算:1-(node_filesystem_avail_bytes{fstype="ext4"})/(node_filesystem_size_bytes{fstype="ext4"})
不同的磁盘文件分区,磁盘使用情况不一样,一般关注容器引擎空间和pod容器空间的使用率:

5、网络流量
网络流量下载统计计算公式:
irate(node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[30m])*8网络流量上传统计计算公式:
irate(node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[30m])*8
1.2 pod监控
1、POD内存使用率
container_memory_rss : 是Pod实际使用内存数container_spec_memory_limit_bytes: 是分配给Pod的内存配额sum(container_memory_rss{container!="POD",container!="alermanager",image!="",pod!=""})by(pod) / sum(container_spec
2、POD的CPU使用率
container_cpu_usage_seconds_total 是容器累计使用的CPU时间,用它除以CPU总时间,就可以得到容器的cpu使用率,首先计算容器的CPU占用时间,由于节点上的cpu有多个,所以需要将容器在每个CPU上占用的时间累加起来。pod在3m 内累积使用的CPU时间为(根据pod和namespace 进行分组查):
(sum(rate(container_cpu_usage_seconds_total{namespace="default",pod!=""}[3m]))by(pod))
然后计算CPU的总时间,这里的CPU数量是容器分配到的CPU数量,container_spec_cpu_quota 这个指标就是容器的cpu配额。它的值是容器指定的 cpu核数100000 ,所以pod在1s内cpu总时间为: Pod 的 CPU 核数1s。
(sum(container_spec_cpu_quota{namespace="default",pod!=""})by(pod)/100000
container_spec_cpu_quota是容器的CPU配额。所以只有配置了resource.cpu.limits CPU 的pod 才有该指标。将上面 这两个语句的结果 相除。就得到了容器的CPU利用率:
container_cpu_usage_seconds_total:container累计使用的CPU时间,除以CPU的总时间,就得到了容器的CPU使用率container_spec_cpu_quota:container的配额,为容器指定的CPU个数*100000sum(rate(container_cpu_usage_seconds_total{image!="",container!="POD",container!=""}[1m])) by (pod,namespace) / (sum(container_spec_cpu_quota{image!="",container!="POD",container!=""}/100000) by (pod,namespace)) * 100
3、POD的文件系统使用量
sum(container_fs_usage_bytes{image!="",container!="POD",container!=""}) by(pod, namespace) / 1024 / 1024 / 1024
相关文章:
Java web应用性能分析之【prometheus监控K8s指标说明】
常规k8s的监控指标 单独 1、集群维度 集群状态集群节点数节点状态(正常、不可达、未知)节点的资源使用率(CPU、内存、IO等) 2、应用维度 应用响应时间 应用的错误率 应用的请求量 3、系统和集群组件维度 API服务器状态控…...
Spring Boot中的应用配置文件管理
Spring Boot中的应用配置文件管理 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨Spring Boot中的应用配置文件管理。在现代的软件开发中&am…...
SCCB协议介绍,以及与IIC协议对比
在之前的文章里已经介绍了IIC协议:iic通信协议 这篇内容主要介绍一下SCCB协议。 文章目录 SCCB协议:SCCB时序图iic时序图SCCB时序 VS IIC时序 总:SCCB协议常用在摄像头配置上面,例如OV5640摄像头,和IIC协议很相似&…...
K8S基础简介
用于自动部署,扩展和管理容器化应用程序的开源系统。 功能: 服务发现和负载均衡; 存储编排; 自动部署和回滚; 自动二进制打包; 自我修复; 密钥与配置管理; 1. K8S组件 主从方式架…...
Studying-代码随想录训练营day24| 93.复原IP地址、78.子集、90.子集II
第24天,回溯算法part03,牢记回溯三部曲,掌握树形结构结题方法💪 目录 93.复原IP地址 78.子集 90.子集II 总结 93.复原IP地址 文档讲解:代码随想录复原IP地址 视频讲解:手撕复原IP地址 题目࿱…...
2024《汽车出海全产业数据安全合规发展白皮书》下载
随着中国制造向中国智造目标的迈进,中国汽车正以前所未有的速度和质量,在全球市场上开疆拓土。不过,在中国汽车加快出海步伐的过程中,数据安全合规风险管理成为车企不容忽视的课题。 6月25日,在中国(上海&…...
nvm安装以及idea下vue启动项目过程和注意事项
注意1:nvm版本不要太低,1.1.7会出现下面这个问题,建议1.1.10及其以上版本 然后安装这个教程安装nvm和node.js 链接: nvm安装教程(一篇文章所有问题全搞定,非常详细) 注意2:上面的教程有一步骤…...
Java SPI服务发现与扩展的利器
Java中,为了实现模块之间的解耦和可扩展性,我们常常需要一种机制来动态加载和替换实现。Java SPI就是这样一种机制,它允许我们在不修改原有代码的情况下,为接口添加新的实现,并在运行时动态加载它们。 SPI,…...
Ansible的Playbook
Playbook 特点 playbook 剧本是由一个或多个"play"组成的列表play的主要功能在于将预定义的一组主机,装扮成事先通过ansible中的task定义好的任务角色。Task实际是调用ansible的一个module,将多个play组织在一个playbook中,即可以让…...
多平台自动养号【开心版】偷偷使用就行了!
大家好,今天我无意间发现了一款【多平台自动养号工具】,看了一下里面的功能还是挺全面的,包含了【抖音,快手,小红薯】还有一些截流功能 虽然这款工具功能强大,但美中不足的是需要付费的。但别担心…...
Android与JavaScript的交互,以实现从WebView中打开原生页面并传递参数
在Android应用中,实现Android与JavaScript的交互,以实现从WebView中打开原生页面并传递参数,可以通过以下详细步骤完成: 1. 准备工作 添加WebView至布局:在你的Activity或Fragment的XML布局文件中加入WebView控件。 …...
信息(文字、图像、音频、视频等)在计算机中是如何存储及显示的
信息(文字、图像、音频、视频等)在计算机中是如何存储及显示的 图片的存储图片的文件格式像素数据的二进制表示存储和处理显示总结 图片的显示4. 像素点控制具体的像素控制过程示例总结 如题,这里以图片为例。 图片的存储 计算机桌面上的一…...
【考研408计算机组成原理】微程序设计重要考点指令流水线考研真题+考点分析
苏泽 “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家 目录 微指令的形成方式 微指令的地址形成方式 对应考题 题目:微指令的地址形成方式 - 断定方式 解题思路: 答题: 分析考点&…...
查看哪个docker环境在占用gpu
前言 有时候发现某些docker占用gpu资源却没有训练,需要查清楚是哪个并且把它stop掉。 方法 在docker里面用nvidia-smi命令,没有pid显示,需要在外面使用。得到pid信息后,使用命令 docker top 15766f6eeaf7(容器ID) | grep 551…...
JVM相关总结
JVM的些许问题 1.JVM内存区域划分 2.JVM类加载过程 3.JVM的垃圾回收机制 1.JVM的内存区域划分 一个运行起来的Java进程就是一个JVM虚拟机,需要从操作系统申请一大片内存,就会把内存划分成几个区域,每个区域都有不同的作用 常见的面试题 2.JVM类加载过程 熟练背诵 ! ! !…...
Python 面试【初级】
欢迎莅临我的博客 💝💝💝,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...
机器学习SVR 随机森林 RBF神经网络做回归预测的MATLAB代码
SVR 参考这篇文章 Libsvm使用笔记【matlab】 close all; clc clear %% 下载数据 load(p_train.mat); load(p_test.mat); load(t_train.mat); load(t_test.mat); %% 数据归一化 %输入样本归一化 [pn_train,ps1] mapminmax(p_train); pn_train pn_train; pn_test mapminma…...
Spring Boot中配置Swagger用于API文档
Spring Boot中配置Swagger用于API文档 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨如何在Spring Boot应用中配置Swagger,以便于快…...
学习java第一百一十六天
Spring Framework有哪些不同的功能? 答: 轻量级-Spring 在代码量和透明度方面都很轻便。 IOC-控制反转AOP-面向切面编程可以将应用业务逻辑和系统服务分离,以实现高内聚。容器-Spring 负责创建和管理对象(Bean)的生命周…...
SQL Server的隐私盾牌:动态数据屏蔽(DMS)全面解析
🛡️ SQL Server的隐私盾牌:动态数据屏蔽(DMS)全面解析 在数据驱动的商业世界中,保护敏感信息至关重要。SQL Server提供了一种强大的安全特性——动态数据屏蔽(Dynamic Data Masking,简称DMS),…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
