当前位置: 首页 > news >正文

Hugging Face Accelerate 两个后端的故事:FSDP 与 DeepSpeed

社区中有两个流行的零冗余优化器 (Zero Redundancy Optimizer,ZeRO)算法实现,一个来自DeepSpeed,另一个来自PyTorch。Hugging FaceAccelerate对这两者都进行了集成并通过接口暴露出来,以供最终用户在训练/微调模型时自主选择其中之一。

本文重点介绍了 Accelerate 对外暴露的这两个后端之间的差异。为了让用户能够在这两个后端之间无缝切换,我们在 Accelerate 中合并了一个精度相关的 PR及一个新的概念指南。

  • 零冗余优化器 (Zero Redundancy Optimizer,ZeRO)https://arxiv.org/abs/1910.02054

  • DeepSpeedhttps://github.com/microsoft/DeepSpeed

  • PyTorchhttps://pytorch.org/docs/stable/fsdp.html

  • Acceleratehttps://hf.co/docs/accelerate/en/index

  • 一个精度相关的 PRhttps://github.com/huggingface/accelerate/issues/2624

  • 一个新的概念指南https://hf.co/docs/accelerate/concept_guides/fsdp_and_deepspeed

FSDP 和 DeepSpeed 可以互换吗?

最近,我们尝试分别使用 DeepSpeed 和 PyTorch FSDP 进行训练,发现两者表现有所不同。我们使用的是 Mistral-7B 基础模型,并以半精度 (bfloat16) 加载。可以看到 DeepSpeed (蓝色) 损失函数收敛良好,但 FSDP (橙色) 损失函数没有收敛,如图 1 所示。

8a14918ed7dfb7f513ff78f540a7dc75.png

我们猜想可能需要根据 GPU 数量对学习率进行缩放,且由于我们使用了 4 个 GPU,于是我们将学习率提高了 4 倍。然后,损失表现如图 2 所示。

c2eec36e23f3e42b226a18df283e92a5.png

看起来,通过按 GPU 数量缩放 FSDP 学习率,已经达到了预期!然而,当我们在不进行缩放的情况下尝试其他学习率 (1e-5) 时,我们却又观察到这两个框架的损失和梯度范数特征又是趋近一致的,如图 3 所示。

4b11b02ceec22bbde20f9eafe2444974.png

精度很重要

DeepSpeed 代码库的 DeepSpeedZeroOptimizer_Stage3 (顾名思义,处理第 3 阶段优化器分片) 实现代码中,我们注意到 trainable_param_groups (可训参数组) 被传入一个内部函数 _setup_for_real_optimizer,该函数会调用另一个名为 _create_fp32_partitions 的函数。正如其名称中的 fp32 所示,DeepSpeed 内部执行了精度上转,并在设计上始终将主权重保持为 fp32 精度。而上转至全精度意味着:同一个学习率,上转后的优化器可以收敛,而原始低精度下的优化器则可能不会收敛。前述现象就是这种精度差异的产物。

在 FSDP 中,在把模型和优化器参数分片到各 GPU 上之前,这些参数首先会被“展平”为一维张量。FSDP 和 DeepSpeed 对这些“展平”参数使用了不同的 dtype,这会影响 PyTorch 优化器的表现。表 1 概述了两个框架各自的处理流程,“本地?”列说明了当前步骤是否是由各 GPU 本地执行的,如果是这样的话,那么上转的内存开销就可以分摊到各个 GPU。

流程本地?框架详情
模型加载 (如 AutoModel.from_pretrained(..., torch_dtype=torch_dtype))

准备,如创建“展平参数”FSDP
DeepSpeed
使用 torch_dtype
不管 torch_dtype,直接创建为 float32
优化器初始化FSDP
DeepSpeed
torch_dtype 创建参数
float32 创建参数
训练步 (前向、后向、归约)FSDP
DeepSpeed
遵循fsdp.MixedPrecision
遵循 deepspeed_config_file 中的混合精度设置
优化器 (准备阶段)FSDP
DeepSpeed
按需上转至 torch_dtype
所有均上转至 float32
优化器 (实际执行阶段)FSDP
DeepSpeed
torch_dtype 精度进行
float32 精度进行

表 1:FSDP 与 DeepSpeed 混合精度处理异同

  • fsdp.MixedPrecisionhttps://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.MixedPrecision

几个要点:

  • 正如 🤗 Accelerate 上的这一问题所述,混合精度训练的经验法则是将可训参数精度保持为 float32

  • 当在大量 GPU 上进行分片时,上转 (如 DeepSpeed 中所做的那样) 对内存消耗的影响可能可以忽略不计。然而,当在少量 GPU 上使用 DeepSpeed 时,内存消耗会显著增加,高达 2 倍。

  • FSDP 的 PyTorch 原生实现不会强制上转,其支持用户以低精度操作 PyTorch 优化器,因此相比 DeepSpeed 提供了更大的灵活性。

  • 这一问题https://github.com/huggingface/accelerate/issues/2624#issuecomment-2058402753

在 🤗 Accelerate 中对齐 DeepSpeed 和 FSDP 的行为

为了在🤗 Accelerate 中更好地对齐 DeepSpeed 和 FSDP 的行为,我们可以在启用混合精度时自动对 FSDP 执行上转。我们为此做了一个 PR,该 PR 现已包含在0.30.0 版本中了。

  • 0.30.0 版本https://github.com/huggingface/accelerate/releases/tag/v0.30.0

cdbb25770a3c65bbb3f87990fd626d09.png

有了这个 PR,FSDP 就能以两种模式运行:

  • 与 DeepSpeed 一致的混合精度模式

  • 针对内存受限场景的低精度模式,如图 4 所示。

表 2 总结了两种新的 FSDP 模式,并与 DeepSpeed 进行了比较。

框架模型加载 (torch_dtype)混合精度准备 (本地)训练优化器 (本地)
FSDP (低精度模式)bf16缺省 (无)bf16bf16bf16
FSDP (混合精度模式)bf16bf16fp32bf16fp32
DeepSpeedbf16bf16fp32bf16fp32

表 2:两种新 FSDP 模式总结及与 DeepSpeed 的对比

吞吐量测试结果

我们使用IBM Granite 7B模型 (其架构为 Meta Llama2) 进行吞吐量比较。我们比较了模型的浮点算力利用率 (Model Flops Utilization,MFU) 和每 GPU 每秒词元数这两个指标,并针对 FSDP (完全分片) 和 DeepSpeed (ZeRO3) 两个场景进行了测量。

  • IBM Granite 7Bhttps://hf.co/ibm-granite/granite-7b-base

如上文,我们使用 4 张 A100 GPU,超参如下:

  • batch size 为 8

  • 模型加载为 torch.bfloat16

  • 使用 torch.bfloat16 混合精度

表 3 表明 FSDP 和 DeepSpeed 的表现类似,这与我们的预期相符。

随着大规模对齐技术 (如InstructLab及GLAN) 的流行,我们计划对结合各种提高吞吐量的方法 (如,序列组装 + 4D 掩码、torch.compile、选择性 checkpointing) 进行全面的吞吐量对比基准测试。

  • InstructLabhttps://github.com/instructlab

  • GLANhttps://arxiv.org/abs/2402.13064

框架每 GPU 每秒词元数**每步耗时 (s) ****浮点算力利用率 (MFU) **
FSDP (混合精度模式)3158.710.40.41
DeepSpeed3094.510.60.40

表 3:四张 A100 GPU 上 FSDP 和 DeepSpeed 之间的大致吞吐量比较。

最后的话

我们提供了新的概念指南以帮助用户在两个框架之间迁移。该指南可以帮助用户厘清以下问题:

  • 如何实现等效的分片策略?

  • 如何进行高效的模型加载?

  • FSDP 和 DeepSpeed 中如何管理权重预取?

  • 与 DeepSpeed 对等的 FSDP 封装是什么?

我们在 🤗 Accelerate 中考虑了配置这些框架的各种方式:

  • 使用 accelerate launch 从命令行配置

  • 从🤗 Accelerate 提供给DeepSpeedhttps://hf.co/docs/accelerate/main/en/package_reference/deepspeed和FSDPhttps://hf.co/docs/accelerate/main/en/package_reference/fsdp的各种 Plugin 类中配置

🤗 Accelerate 使得在 FSDP 和 DeepSpeed 之间切换非常丝滑,大部分工作都只涉及更改 Accelerate 配置文件 (有关这方面的说明,请参阅新的概念指南) 。

除了配置变更之外,还有一些如检查点处理方式的差异等,我们一并在指南中进行了说明。

本文中的所有实验都可以使用原始 🤗 Accelerate 问题中的代码重现。

  • 概念指南https://hf.co/docs/accelerate/v0.31.0/en/concept_guides/fsdp_and_deepspeed

  • 原始 🤗 Accelerate 问题https://github.com/huggingface/accelerate/issues/2624

我们计划后续在更大规模 GPU 上进行吞吐量比较,并对各种不同技术进行比较,以在保持模型质量的前提下更好地利用更多的 GPU 进行微调和对齐。

致谢

本工作凝聚了来自多个组织的多个团队的共同努力。始于 IBM 研究中心,特别是发现该问题的 Aldo Pareja 和发现精度差距并解决该问题的 Fabian Lim。Zach Mueller 和Stas Bekman在提供反馈和修复 accelerate 的问题上表现出色。Meta PyTorch 团队的 Less Wright 对有关 FSDP 参数的问题非常有帮助。最后,我们还要感谢 DeepSpeed 团队对本文提供的反馈。

  • Stas Bekmanhttps://github.com/stas00

  • DeepSpeedhttps://www.deepspeed.ai/


英文原文: https://hf.co/blog/deepspeed-to-fsdp-and-back

原文作者: Yu Chin Fabian, aldo pareja, Zachary Mueller, Stas Bekman

译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。

相关文章:

Hugging Face Accelerate 两个后端的故事:FSDP 与 DeepSpeed

社区中有两个流行的零冗余优化器 (Zero Redundancy Optimizer,ZeRO)算法实现,一个来自DeepSpeed,另一个来自PyTorch。Hugging FaceAccelerate对这两者都进行了集成并通过接口暴露出来,以供最终用户在训练/微调模型时自主选择其中之…...

TextField是用于在用户界面中输入文本的控件。它广泛应用于表单、搜索框、评论区等需要用户输入文字的场景

TextField是用于在用户界面中输入文本的控件。它广泛应用于表单、搜索框、评论区等需要用户输入文字的场景。以下是对TextField的详细解释,涵盖其各个方面的功能和属性。 基本属性 text 描述:TextField中当前显示的文本。用法:text: "示…...

MYSQL 四、mysql进阶 5(InnoDB数据存储结构)

一、数据库的存储结构:页 索引结构给我们提供了高效的索引方式,不过索引信息以及数据记录都是保存在文件上的,确切说时存储在页结构中,另一方面,索引是在存储引擎中实现的,Mysql服务器上的存储引擎负责对表…...

Spring企业开发核心框架-下

五、Spring AOP面向切面编程 1、场景设定和问题复现 ①准备AOP项目 项目名:Spring-aop-annotation ②声明接口 /*** - * / 运算的标准接口!*/ public interface Calculator { int add(int i, int j); int sub(int i, int j); int mul(int i, in…...

X射线底片焊缝缺陷检测

实现四种焊缝缺陷的检测和分割处理。...

直播的js代码debug解析找到protobuf消息的定义

我们都知道直播的弹幕消息是通过websocket发送的,而且是通过protobuf传输的,那么这里面传输了哪些内容,这个proto文件又要怎么定义?每个消息叫什么,消息里面又包含有哪些字段,每个字段又是什么类型&#xf…...

详细学习es6扩展运算符

ES6中的扩展运算符(Spread Operator)是一种非常方便的语法,主要用于将可迭代对象(比如数组、字符串等)展开成多个参数。以下是关于ES6扩展运算符的详细内容: 用法: 在数组字面量中展开数组&am…...

HEC-HMS水文模型教程

原文链接:HEC-HMS水文模型教程https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247607904&idx5&sn1a210328a3fc8f941b433674d8fe2c85&chksmfa826787cdf5ee91d01b6981ebd89deac3e350d747d0fec45ce2ef75d7cb8009341c6f55114d&token90645021…...

Spring Cloud LoadBalancer基础入门与应用实践

官网地址:https://docs.spring.io/spring-cloud-commons/reference/spring-cloud-commons/loadbalancer.html 【1】概述 Spring Cloud LoadBalancer是由SpringCloud官方提供的一个开源的、简单易用的客户端负载均衡器,它包含在SpringCloud-commons中用…...

layui在表格中嵌入上传按钮,并修改上传进度条

当需要在表格中添加上传文件按钮,并不需要弹出填写表单的框的时候,需要在layui中,用按钮触发文件选择 有一点需要说明的是,layui定义table并不是在定义的标签中渲染,而是在紧接着的标签中渲染,所以要获取实…...

14-10 AIGC 项目生命周期——第一阶段

生成式 AI 项目生命周期的整个过程类似于从范围、选择、调整和对齐/协调模型以及应用程序集成开始的顺序依赖过程。流程表明每个步骤都建立在前一步的基础上。有必要了解每个阶段对于项目的成功都至关重要。 下面的流程图重点介绍了生成式 AI 项目生命周期的第一阶段 1 — “范…...

经典小游戏(一)C实现——三子棋

switch(input){case 1:printf("三子棋\n");//这里先测试是否会执行成功break;case 0:printf("退出游戏\n");break;default :printf("选择错误,请重新选择!\n");break;}}while(input);//直到输入的结果为假,循环才会结束} …...

如何利用AI生成可视化图表(统计图、流程图、思维导图……)免代码一键绘制图表

由于目前的AI生成图表工具存在以下几个方面的问题: 大多AI图表平台是纯英文,对国内用户来说不够友好;部分平台在生成图表前仍需选择图表类型、配置项,操作繁琐;他们仍需一份规整的数据表格,需要人为对数据…...

Firefox 编译指南2024 Windows10-使用Git 管理您的Firefox(五)

1. 引言 在现代软件开发中,版本控制系统(VCS)是不可或缺的工具,它不仅帮助开发者有效管理代码的变化,还支持团队协作与项目管理。Mercurial 是一个高效且易用的分布式版本控制系统,其设计目标是简洁、快速…...

ubuntu 18 虚拟机安装(1)

ubuntu 18 虚拟机安装 ubuntu 18.04.6 Ubuntu 18.04.6 LTS (Bionic Beaver) https://releases.ubuntu.com/bionic/ 参考: 设置固定IP地址 https://blog.csdn.net/wowocpp/article/details/126160428 https://www.jianshu.com/p/1d133c0dec9d ubuntu-18.04.6-l…...

Github 上 Star 数最多的大模型应用基础服务 Dify 深度解读(一)

背景介绍 接触过大模型应用开发的研发同学应该都或多或少地听过 Dify 这个大模型应用基础服务,这个项目自从 2023 年上线以来,截止目前(2024-6)已经获得了 35k 多的 star,是目前大模型应用基础服务中最热门的项目之一…...

XStream导出xml文件

最终效果 pom依赖 <dependency><groupId>com.thoughtworks.xstream</groupId><artifactId>xstream</artifactId><version>1.4.11.1</version></dependency>代码 XStreamUtil 这个直接复制即可 import com.thoughtworks.xst…...

陪诊小程序搭建:构建便捷医疗陪诊服务的创新实践

在当今快节奏的社会&#xff0c;医疗服务与人们的生活息息相关。然而&#xff0c;在医疗体系中&#xff0c;患者往往面临着信息不对称、流程繁琐、陪伴需求得不到满足等问题。为了解决这些问题&#xff0c;我们提出了一种创新的解决方案——陪诊小程序&#xff0c;旨在为患者提…...

0139__TCP协议

全网最详细TCP参数讲解&#xff0c;再也不用担心没有面试机会了_tcp的参数-CSDN博客 TCP协议详解-腾讯云开发者社区-腾讯云 TCP-各种参数 - 简书...

家政小程序的开发,带动市场快速发展,提高家政服务质量

当下生活水平逐渐提高&#xff0c;也增加了年轻人的工作压力&#xff0c;同时老龄化也在日益增加&#xff0c;使得大众对家政的需求日益提高&#xff0c;能力、服务质量高的家政人员能够有效提高大众的生活幸福指数。 但是&#xff0c;传统的家政服务模式存在着效率低、用户与…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...