MYSQL 四、mysql进阶 5(InnoDB数据存储结构)
一、数据库的存储结构:页
索引结构给我们提供了高效的索引方式,不过索引信息以及数据记录都是保存在文件上的,确切说时存储在页结构中,另一方面,索引是在存储引擎中实现的,Mysql服务器上的存储引擎负责对表中数据的读取和写入工作。不同存储引擎中存放的格式一般是不同的,甚至有的存储引擎比如Memory都不用磁盘来存储数据。
由于InnoDB是mysql的默认存储引擎,所以下面主要讲解的是InnoDB存储引擎的数据存储结构。
1.1 磁盘与内存交互基本单位:页
InnoDB将数据分为若干个页,InnoDB中页的大小默认为16KB,
以页作为磁盘和内存之间交互的基本单位,也就是一次最少从磁盘中读取16KB的内容到内存中,一次最少把内存中的16KB内容刷新到磁盘中,也就是说,在数据库中,不论读一行,还是读多行,都是将这些行所在的页进行加载,也就是说,数据库管理存储空间的基本单位是页,数据库IO操作的最小单位是页,一个页中可以存储多个行记录。
记录时按照行来存储的,但是数据库的读取并不以行为单位,否则一次读取(也就是一次IO操作)只能处理一行数据,效率会非常低

1.2页结构概述
页a、页b、页c...页n这些可以不在物理结构上相连,只要通过双向链表相关联即可,每个数据页中的记录会按照主键值从小到大的顺序组成一个单向链表,每个数据页都会为存储在它里面的记录生成一个页目录,在通过主键查找某条记录的时候可以在页目录中使用二分法快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可,快速找到指定的记录。
1.3 页的大小
不同的数据库管理系统(简称DBMS)的页大小不同。比如在mysql的InnoDB存储引擎中,默认页的大小是16KB,我们可以通过下面的命令进行查看:
show variables like '%innodb_page_size%'
SQL Server 中页的大小为 8KB,而在 Oracle 中我们用术语 "块" (Block)来表示 "页",Oracle 支持的快大小为2KB, 4KB, 8KB, 16KB, 32KB 和 64KB。
1.4 页的上层结构
另外在数据库中,还存在着区、段、和表空间的概念,行、页、区、段、表空间的关系如下所示
区(Extent)是比页大一级的存储结构,在InnoDB存储引擎中,一个区会分配64个连续的页,因为InnoDB中页大小默认是16KB,所以一个区的大小是64*16KB=1MB。
段(Segment)由一个或者多个区组成,区在文件系统是一个连续分配的空间(在InnoDB中是连续的64个页)。不过在段中不要求区与区之间是相邻的。段是数据库中的分配单位,不同类型的数据库对象以不同的段的形式存在。当我们创建数据表、索引的时候,就会相应创建对应的段,比如创建一张表时会创建一个表段,创建一个索引时会创建一个索引段。
表空间(Tablespace)是一个逻辑容器,表空间存储的对象时段,在一个表空间中可以有一个或多个段,但是一个段只能属于一个表空间。数据库由一个或多个表空间组成,表空间从管理上可以分为 系统表空间、用户表空间、撤销表空间、临时表空间等。
二、页的内部结构
页如果按照类型划分的话,常见的有数据页(保存B+数节点)、系统页、Undo页和事务数据页等。数据页是我们最常用的页。
数据页的16KB大小的存储空间被划分为七个部分,分别是文件头(File Header),页头(page Header)、最大最小记用户记录(User Records)、空闲时间(Free Space),页目录(Page Directory)和文件尾(File Tailer)。
页结构的示意图如下所示:

这七个部分作用分别如下:

我们可以把这个7个结构分成3个部分:
第一部分:File Header(文件头部)和 FileTrailer(文件尾部)
首先文件通用部分,也就是文件头和文件尾。
1、文件头信息
不同类型的页都会以File Header作为第一个组成部分,它描述了一些针对各种页都通用的一些信息,比方说这个页的编号是多少,它的上一个页,下一个页是谁等,所有的数据页组成一个双链表,这个部分占用固定的
相关文章:
MYSQL 四、mysql进阶 5(InnoDB数据存储结构)
一、数据库的存储结构:页 索引结构给我们提供了高效的索引方式,不过索引信息以及数据记录都是保存在文件上的,确切说时存储在页结构中,另一方面,索引是在存储引擎中实现的,Mysql服务器上的存储引擎负责对表…...
Spring企业开发核心框架-下
五、Spring AOP面向切面编程 1、场景设定和问题复现 ①准备AOP项目 项目名:Spring-aop-annotation ②声明接口 /*** - * / 运算的标准接口!*/ public interface Calculator { int add(int i, int j); int sub(int i, int j); int mul(int i, in…...
X射线底片焊缝缺陷检测
实现四种焊缝缺陷的检测和分割处理。...
直播的js代码debug解析找到protobuf消息的定义
我们都知道直播的弹幕消息是通过websocket发送的,而且是通过protobuf传输的,那么这里面传输了哪些内容,这个proto文件又要怎么定义?每个消息叫什么,消息里面又包含有哪些字段,每个字段又是什么类型…...
详细学习es6扩展运算符
ES6中的扩展运算符(Spread Operator)是一种非常方便的语法,主要用于将可迭代对象(比如数组、字符串等)展开成多个参数。以下是关于ES6扩展运算符的详细内容: 用法: 在数组字面量中展开数组&am…...
HEC-HMS水文模型教程
原文链接:HEC-HMS水文模型教程https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247607904&idx5&sn1a210328a3fc8f941b433674d8fe2c85&chksmfa826787cdf5ee91d01b6981ebd89deac3e350d747d0fec45ce2ef75d7cb8009341c6f55114d&token90645021…...
Spring Cloud LoadBalancer基础入门与应用实践
官网地址:https://docs.spring.io/spring-cloud-commons/reference/spring-cloud-commons/loadbalancer.html 【1】概述 Spring Cloud LoadBalancer是由SpringCloud官方提供的一个开源的、简单易用的客户端负载均衡器,它包含在SpringCloud-commons中用…...
layui在表格中嵌入上传按钮,并修改上传进度条
当需要在表格中添加上传文件按钮,并不需要弹出填写表单的框的时候,需要在layui中,用按钮触发文件选择 有一点需要说明的是,layui定义table并不是在定义的标签中渲染,而是在紧接着的标签中渲染,所以要获取实…...
14-10 AIGC 项目生命周期——第一阶段
生成式 AI 项目生命周期的整个过程类似于从范围、选择、调整和对齐/协调模型以及应用程序集成开始的顺序依赖过程。流程表明每个步骤都建立在前一步的基础上。有必要了解每个阶段对于项目的成功都至关重要。 下面的流程图重点介绍了生成式 AI 项目生命周期的第一阶段 1 — “范…...
经典小游戏(一)C实现——三子棋
switch(input){case 1:printf("三子棋\n");//这里先测试是否会执行成功break;case 0:printf("退出游戏\n");break;default :printf("选择错误,请重新选择!\n");break;}}while(input);//直到输入的结果为假,循环才会结束} …...
如何利用AI生成可视化图表(统计图、流程图、思维导图……)免代码一键绘制图表
由于目前的AI生成图表工具存在以下几个方面的问题: 大多AI图表平台是纯英文,对国内用户来说不够友好;部分平台在生成图表前仍需选择图表类型、配置项,操作繁琐;他们仍需一份规整的数据表格,需要人为对数据…...
Firefox 编译指南2024 Windows10-使用Git 管理您的Firefox(五)
1. 引言 在现代软件开发中,版本控制系统(VCS)是不可或缺的工具,它不仅帮助开发者有效管理代码的变化,还支持团队协作与项目管理。Mercurial 是一个高效且易用的分布式版本控制系统,其设计目标是简洁、快速…...
ubuntu 18 虚拟机安装(1)
ubuntu 18 虚拟机安装 ubuntu 18.04.6 Ubuntu 18.04.6 LTS (Bionic Beaver) https://releases.ubuntu.com/bionic/ 参考: 设置固定IP地址 https://blog.csdn.net/wowocpp/article/details/126160428 https://www.jianshu.com/p/1d133c0dec9d ubuntu-18.04.6-l…...
Github 上 Star 数最多的大模型应用基础服务 Dify 深度解读(一)
背景介绍 接触过大模型应用开发的研发同学应该都或多或少地听过 Dify 这个大模型应用基础服务,这个项目自从 2023 年上线以来,截止目前(2024-6)已经获得了 35k 多的 star,是目前大模型应用基础服务中最热门的项目之一…...
XStream导出xml文件
最终效果 pom依赖 <dependency><groupId>com.thoughtworks.xstream</groupId><artifactId>xstream</artifactId><version>1.4.11.1</version></dependency>代码 XStreamUtil 这个直接复制即可 import com.thoughtworks.xst…...
陪诊小程序搭建:构建便捷医疗陪诊服务的创新实践
在当今快节奏的社会,医疗服务与人们的生活息息相关。然而,在医疗体系中,患者往往面临着信息不对称、流程繁琐、陪伴需求得不到满足等问题。为了解决这些问题,我们提出了一种创新的解决方案——陪诊小程序,旨在为患者提…...
0139__TCP协议
全网最详细TCP参数讲解,再也不用担心没有面试机会了_tcp的参数-CSDN博客 TCP协议详解-腾讯云开发者社区-腾讯云 TCP-各种参数 - 简书...
家政小程序的开发,带动市场快速发展,提高家政服务质量
当下生活水平逐渐提高,也增加了年轻人的工作压力,同时老龄化也在日益增加,使得大众对家政的需求日益提高,能力、服务质量高的家政人员能够有效提高大众的生活幸福指数。 但是,传统的家政服务模式存在着效率低、用户与…...
JavaScript高级程序设计(第四版)--学习记录之对象、类与面向对象编程(下)
类 ES6新引入class关键字具有正式定义类的能力。 类定义:类声明和类表达式。 // 类声明 class Person {} // 类表达式 const Animal class {}; 类定义与函数定义的不同: 1:函数声明可以提升,类定义不能 2:函数受函数…...
PDF 生成(5)— 内容页支持由多页面组成
当学习成为了习惯,知识也就变成了常识。 感谢各位的 关注、点赞、收藏和评论。 新视频和文章会第一时间在微信公众号发送,欢迎关注:李永宁lyn 文章已收录到 github 仓库 liyongning/blog,欢迎 Watch 和 Star。 回顾 在本篇开始…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
