构建LangChain应用程序的示例代码:48、如何使用非文本生成工具创建多模态代理
多模态输出:图像和文本
这个示例展示了如何使用非文本生成工具来创建多模态代理。
本例仅限于文本和图像输出,并使用UUID在工具和代理之间传输内容。
本例使用Steamship生成和存储生成的图像。生成的内容默认受到身份验证保护。
您可以在这里获取Steamship API密钥:https://steamship.com/account/api
import refrom IPython.display import Image, display
from steamship import Block, Steamship# 导入所需的库
# re用于正则表达式
# Image和display用于显示图像
# Block和Steamship是Steamship库的组件
from langchain.agents import AgentType, initialize_agent
from langchain.tools import SteamshipImageGenerationTool
from langchain_openai import OpenAI# 导入LangChain相关的库
# AgentType和initialize_agent用于初始化代理
# SteamshipImageGenerationTool是用于图像生成的工具
# OpenAI是LangChain的OpenAI接口
llm = OpenAI(temperature=0)# 初始化OpenAI语言模型,temperature设为0表示输出最可能的结果
DALL-E
tools = [SteamshipImageGenerationTool(model_name="dall-e")]# 创建一个使用DALL-E模型的图像生成工具列表
mrkl = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)# 初始化代理,使用之前定义的工具和语言模型
# 代理类型为ZERO_SHOT_REACT_DESCRIPTION,verbose=True表示输出详细信息
output = mrkl.run("How would you visualize a parot playing soccer?")# 运行代理,生成一个鹦鹉踢足球的图像
def show_output(output):"""Display the multi-modal output from the agent."""UUID_PATTERN = re.compile(r"([0-9A-Za-z]{8}-[0-9A-Za-z]{4}-[0-9A-Za-z]{4}-[0-9A-Za-z]{4}-[0-9A-Za-z]{12})")outputs = UUID_PATTERN.split(output)outputs = [re.sub(r"^\W+", "", el) for el in outputs] # Clean trailing and leading non-word charactersfor output in outputs:maybe_block_id = UUID_PATTERN.search(output)if maybe_block_id:display(Image(Block.get(Steamship(), _id=maybe_block_id.group()).raw()))else:print(output, end="\n\n")# 定义一个函数来显示代理的多模态输出
# 使用正则表达式匹配UUID
# 如果找到UUID,则显示对应的图像
# 否则打印文本输出
Stable Diffusion
tools = [SteamshipImageGenerationTool(model_name="stable-diffusion")]# 创建一个使用Stable Diffusion模型的图像生成工具列表
mrkl = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)# 使用Stable Diffusion工具重新初始化代理
output = mrkl.run("How would you visualize a parot playing soccer?")# 再次运行代理,使用Stable Diffusion生成鹦鹉踢足球的图像
总结
本文介绍了如何使用非文本生成工具创建多模态代理。示例限于文本和图像输出,并使用UUID在工具和代理之间传输内容。文章使用Steamship来生成和存储图像,并展示了如何使用DALL-E和Stable Diffusion模型生成图像。
扩展知识
-
多模态AI:这种AI系统能够处理和生成多种类型的数据,如文本、图像、音频等。它们在更复杂的任务中表现出色,因为可以综合利用不同类型的信息。
-
DALL-E:这是OpenAI开发的一个AI模型,能够根据文本描述生成图像。它以其创造性和多样性而闻名。
-
Stable Diffusion:这是另一个流行的图像生成AI模型,由Stability AI开发。它以其快速的生成速度和高质量的输出而著称。
-
LangChain:这是一个用于开发以语言模型为中心的应用程序的框架。它提供了许多工具和抽象,使得构建复杂的AI应用变得更加简单。
-
Steamship:这是一个AI开发平台,提供了多种AI服务,包括图像生成和存储。在本例中,它被用来生成和管理图像。
-
UUID(通用唯一识别符):这是一种标准化的标识符,用于在分布式系统中唯一标识信息。在此示例中,它被用来标识和检索生成的图像。
相关文章:
构建LangChain应用程序的示例代码:48、如何使用非文本生成工具创建多模态代理
多模态输出:图像和文本 这个示例展示了如何使用非文本生成工具来创建多模态代理。 本例仅限于文本和图像输出,并使用UUID在工具和代理之间传输内容。 本例使用Steamship生成和存储生成的图像。生成的内容默认受到身份验证保护。 您可以在这里获取Ste…...
【笔记】记录一次全新的Java项目部署过程
记录一次全新的Java项目部署过程 环境:CentOS7一、初始环境准备 yum install wget -y yum install vim -y yum install net-tools -y mkdir /data mkdir /data/html mkdir /data/backend一、安装JDK 17 安装JDK17# 下载rpm wget https://download.oracle.com/java/17/latest/…...
达梦数据库系列—14. 表空间的备份和还原
目录 1、表空间备份 2、表空间还原 3、表空间恢复 4、增量还原恢复 1、表空间备份 表空间只能在联机状态下进行备份。 BACKUP TABLESPACE TBS BACKUPSET /dm/backup/dm_bak/ts_bak_01; 完全备份 BACKUP TABLESPACE TBS FULL BACKUPSET /dm/backup/dm_bak/ts_full_bak_01…...

奔驰G350升级原厂自适应悬挂系统有哪些作用
奔驰 G350 升级自适应悬挂系统后,可根据行车路况自动调整悬架高度和弹性,从而提升驾乘的舒适性和稳定性。 这套系统的具体功能包括: • 多种模式选择:一般有舒适、弯道、运动及越野等模式。例如,弯道模式在过弯时能为…...
一个启动脚本例子
一、全部代码 #!/bin/bash DATE$(date %Y%m%d)SOURCE"abc.jar" TARGET"backup/abc.jar.jew.$DATE"if [ -f "$SOURCE" ]; thencp "$SOURCE" "$TARGET" firm -f abc.jar mv abc_1.jar abc.jarpidNumps -ef | grep $SOURCE |…...

grpc学习golang版( 六、服务器流式传输 )
系列文章目录 第一章 grpc基本概念与安装 第二章 grpc入门示例 第三章 proto文件数据类型 第四章 多服务示例 第五章 多proto文件示例 第六章 服务器流式传输 第七章 客户端流式传输 第八章 双向流示例 文章目录 一、前言二、定义proto文件三、拷贝任意文件进项目四、编写serve…...
ubuntu语音库ALSA报错具体原因
在ubuntu中使用pyaudio或portaudio时总会有下面的提示,不胜其烦。 ALSA lib pcm_dsnoop.c:612:(snd_pcm_dsnoop_open) unable to open slave ALSA lib pcm_dmix.c:1018:(snd_pcm_dmix_open) unable to open slave ALSA lib pcm.c:2217:(snd_pcm_open_noupdate) Unkn…...

Java高级重点知识点-17-异常
文章目录 异常异常处理自定义异常 异常 指的是程序在执行过程中,出现的非正常的情况,最终会导致JVM的非正常停止。Java处 理异常的方式是中断处理。 异常体系 异常的根类是 java.lang.Throwable,,其下有两个子类:ja…...
DM达梦数据库函数分析(与mysql对应函数区别及用法分析)
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝💝💝如有需要请大家订阅我的专栏【数据库系列】哟!我会定期更新相关系列的文章 💝💝💝关注!关注!!请…...

ROS2用c++开发参数节点通信
1.创建节点 cd chapt4/chapt4_ws/ ros2 pkg create example_parameters_rclcpp --build-type ament_cmake --dependencies rclcpp --destination-directory src --node-name parameters_basic --maintainer-name "joe" --maintainer-email "1027038527qq.com&…...

docker 部署jitsi meet
1. 部署环境: 1.1 vm 虚拟机 安装的 centos 7 1.2 centos7安装docker 和 docker-compose 2.docker命令 官网部署文档地址:(文档地址有可能失效) Self-Hosting Guide - Docker | Jitsi Meet 2.1Download and extract the late…...

【Pytest自动化测试详解】
目录 一、前言pytest是一个非常成熟的全功能的Python测试框架,主要特点: 二、pytest安装 2.1、安装 pip install -U pytest 2.2、验证安装 pytest --version # 会展示当前已安装版本 2.3、pytest文档 官方文档:https:…...

6-14题连接 - 高频 SQL 50 题基础版
目录 1. 相关知识点2. 例子2.6. 使用唯一标识码替换员工ID2.7- 产品销售分析 I2.8 - 进店却未进行过交易的顾客2.9 - 上升的温度2.10 - 每台机器的进程平均运行时间2.11- 员工奖金2.12-学生们参加各科测试的次数2.13-至少有5名直接下属的经理2.14 - 确认率 1. 相关知识点 left …...

深度挖掘数据资产,洞察业务先机:利用先进的数据分析技术,精准把握市场趋势,洞悉客户需求,为业务决策提供有力支持,实现持续增长与创新
在当今日益激烈的商业竞争环境中,企业想要实现持续增长与创新,必须深入挖掘和有效运用自身的数据资产。数据不仅是企业运营过程中的副产品,更是洞察市场趋势、理解客户需求、优化业务决策的重要资源。本文将探讨如何通过利用先进的数据分析技…...

亚马逊广告如何设置关键词竞价获取最优广告投入产出比 (ACOS)
在投放亚马逊商品广告的时候,从我们通常的理解来说,关键词竞价CPC设置的越高,广告投入产出比 (ACOS)越高,所以我们通常希望CPC越低越好,但是从我们实际投放广告来看,CPC与ACOS并不是线性相关。有时候CPC设定…...

vision mamba-yolov8:结合Vmamba的yolov8目标检测改进实现
1.vision mamba结构与原理 Mamba成功的关键在于S6模型,该模型为NLP任务设计,通过选择性扫描空间状态序列模型,将二次复杂度降低至线性。但由于视觉信号(如图像)的无序性,Mamba的S6模型不能直接应用…...
2025秋招NLP算法面试真题(十一)-Transformer的并行化
正文 本文主要谈一下关于 Transformer的并行化。文章比较短,适合大家碎片化阅读。 Decoder不用多说,没有并行,只能一个一个的解码,很类似于RNN,这个时刻的输入依赖于上一个时刻的输出。 对于Encoder侧: …...

如何在本地一键配置最强国产大模型
自从OpenAI的ChatGPT横空出世以来,国内外各类大语言模型(LLM)层出不穷,其中不乏Google的Gemini、Claude、文心一言等等。相较于竞争激烈的商业模型赛道,以Llama为代表的开源大模型的进步速度也十分惊人。 伴随着大语言…...

代码随想录算法训练营第九天|151.翻转字符串里的单词、右旋字符串、28. 实现 strStr()、459.重复的子字符串
打卡Day9 1.151.翻转字符串里的单词2.右旋字符串3.28. 实现 strStr()4.459.重复的子字符串 1.151.翻转字符串里的单词 题目链接:翻转字符串里的单词 文档讲解: 代码随想录 思路:首先,移除多余的空格;然后,…...
第6天:文件操作和异常处理
学习目标 掌握如何在Python中进行文件读写操作理解文件的打开模式学习如何处理文件中的数据理解异常处理的基本概念掌握使用try、except、else和finally进行异常处理 学习内容 1. 文件操作 在Python中,文件操作包括打开文件、读写文件内容和关闭文件。 文件的打…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...

jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...

【threejs】每天一个小案例讲解:创建基本的3D场景
代码仓 GitHub - TiffanyHoo/three_practices: Learning three.js together! 可自行clone,无需安装依赖,直接liver-server运行/直接打开chapter01中的html文件 运行效果图 知识要点 核心三要素 场景(Scene) 使用 THREE.Scene(…...

篇章一 论坛系统——前置知识
目录 1.软件开发 1.1 软件的生命周期 1.2 面向对象 1.3 CS、BS架构 1.CS架构编辑 2.BS架构 1.4 软件需求 1.需求分类 2.需求获取 1.5 需求分析 1. 工作内容 1.6 面向对象分析 1.OOA的任务 2.统一建模语言UML 3. 用例模型 3.1 用例图的元素 3.2 建立用例模型 …...