当前位置: 首页 > news >正文

每日Attention学习7——Frequency-Perception Module

模块出处

[link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection


模块名称

Frequency-Perception Module (FPM)


模块作用

获取频域信息,更好识别伪装对象


模块结构

在这里插入图片描述

模块代码
import torch
import torch.nn as nn
import torch.nn.functional as Fclass FirstOctaveConv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,groups=1, bias=False):super(FirstOctaveConv, self).__init__()self.stride = stridekernel_size = kernel_size[0]self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)self.h2l = torch.nn.Conv2d(in_channels, int(alpha * in_channels),kernel_size, 1, padding, dilation, groups, bias)self.h2h = torch.nn.Conv2d(in_channels, in_channels - int(alpha * in_channels),kernel_size, 1, padding, dilation, groups, bias)def forward(self, x):if self.stride ==2:x = self.h2g_pool(x)X_h2l = self.h2g_pool(x)X_h = xX_h = self.h2h(X_h)X_l = self.h2l(X_h2l)return X_h, X_lclass OctaveConv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,groups=1, bias=False):super(OctaveConv, self).__init__()kernel_size = kernel_size[0]self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')self.stride = strideself.l2l = torch.nn.Conv2d(int(alpha * in_channels), int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)self.l2h = torch.nn.Conv2d(int(alpha * in_channels), out_channels - int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)self.h2l = torch.nn.Conv2d(in_channels - int(alpha * in_channels), int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)self.h2h = torch.nn.Conv2d(in_channels - int(alpha * in_channels),out_channels - int(alpha * out_channels),kernel_size, 1, padding, dilation, groups, bias)def forward(self, x):X_h, X_l = xif self.stride == 2:X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)X_h2l = self.h2g_pool(X_h)X_h2h = self.h2h(X_h)X_l2h = self.l2h(X_l)X_l2l = self.l2l(X_l)X_h2l = self.h2l(X_h2l)X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]),int(X_h2h.size()[3])), mode='bilinear')X_h = X_l2h + X_h2hX_l = X_h2l + X_l2lreturn X_h, X_lclass LastOctaveConv(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,groups=1, bias=False):super(LastOctaveConv, self).__init__()self.stride = stridekernel_size = kernel_size[0]self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)self.l2h = torch.nn.Conv2d(int(alpha * out_channels), out_channels,kernel_size, 1, padding, dilation, groups, bias)self.h2h = torch.nn.Conv2d(out_channels - int(alpha * out_channels),out_channels,kernel_size, 1, padding, dilation, groups, bias)self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')def forward(self, x):X_h, X_l = xif self.stride == 2:X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)X_h2h = self.h2h(X_h) X_l2h = self.l2h(X_l) X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]), int(X_h2h.size()[3])), mode='bilinear')X_h = X_h2h + X_l2h return X_hclass FPM(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=(3, 3)):super(FPM, self).__init__()self.fir = FirstOctaveConv(in_channels, out_channels, kernel_size)self.mid1 = OctaveConv(in_channels, in_channels, kernel_size)self.mid2 = OctaveConv(in_channels, out_channels, kernel_size)self.lst = LastOctaveConv(in_channels, out_channels, kernel_size)def forward(self, x):x_h, x_l = self.fir(x)                  x_h_1, x_l_1 = self.mid1((x_h, x_l))     x_h_2, x_l_2 = self.mid1((x_h_1, x_l_1)) x_h_5, x_l_5 = self.mid2((x_h_2, x_l_2)) x_ret = self.lst((x_h_5, x_l_5))return x_retif __name__ == '__main__':x = torch.randn([3, 256, 16, 16])fpm = FPM(in_channels=256, out_channels=64)out = fpm(x)print(out.shape)  # 3, 64, 16, 16

原文表述

具体来说,我们采用八度卷积以端到端的方式自动感知高频和低频信息,从而实现伪装物体检测的在线学习。八度卷积可以有效避免DCT 引起的块状效应,并利用GPU的计算速度优势。此外,它可以轻松插入任意网络。

相关文章:

每日Attention学习7——Frequency-Perception Module

模块出处 [link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection 模块名称 Frequency-Perception Module (FPM) 模块作用 获取频域信息,更好识别伪装对象 模块结构 模块代码 import torch import torch.nn as nn import to…...

【从0实现React18】 (五) 初探react mount流程 完成核心递归流程

更新流程的目的: 生成wip fiberNode树标记副作用flags 更新流程的步骤: 递:beginWork归:completeWork 在 上一节 ,我们探讨了 React 应用在首次渲染或后续更新时的整体更新流程。在 Reconciler 工作流程中&#xff…...

0-30 VDC 稳压电源,电流控制 0.002-3 A

怎么运行的 首先,有一个次级绕组额定值为 24 V/3 A 的降压电源变压器,连接在电路输入点的引脚 1 和 2 上。(电源输出的质量将直接影响与变压器的质量成正比)。变压器次级绕组的交流电压经四个二极管D1-D4组成的电桥整流。桥输出端…...

HTML5+CSS3+JS小实例:图片九宫格

实例:图片九宫格 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1…...

湘潭大学软件工程数据库总结

文章目录 前言试卷结构给学弟学妹的一些参考自己的一些总结 前言 自己可能很早很早之前就准备复习了&#xff0c;但是感觉还是没有学到要点&#xff0c;主要还是没啥紧迫的压力&#xff0c;我们是三月份开学&#xff0c;那时候实验室有朋友挺认真开始学习数据库了&#xff0c;…...

Codeforces Testing Round 1 B. Right Triangles 题解 组合数学

Right Triangles 题目描述 You are given a n m nm nm field consisting only of periods (‘.’) and asterisks (‘*’). Your task is to count all right triangles with two sides parallel to the square sides, whose vertices are in the centers of ‘*’-cells. …...

怎样将word默认Microsoft Office,而不是WPS

设置——>应用——>默认应用——>选择"word"——>将doc和docx都选择Microsoft Word即可...

C语言之进程的学习2

Env环境变量&#xff08;操作系统的全局变量&#xff09;...

web使用cordova打包Andriod

一.安装Gradel 1.下载地址 Gradle Distributions 2.配置环境 3.测试是否安装成功 在cmd gradle -v 二.创建vite项目 npm init vitelatest npm install vite build 三.创建cordova项目 1.全局安装cordova npm install -g cordova 2. 创建项目 cordova create cordova-app c…...

内卷情况下,工程师也应该了解的项目管理

简介&#xff1a;大家好&#xff0c;我是程序员枫哥&#xff0c;&#x1f31f;一线互联网的IT民工、&#x1f4dd;资深面试官、&#x1f339;Java跳槽网创始人。拥有多年一线研发经验&#xff0c;曾就职过科大讯飞、美团网、平安等公司。在上海有自己小伙伴组建的副业团队&…...

【解锁未来:深入了解机器学习的核心技术与实际应用】

解锁未来&#xff1a;深入了解机器学习的核心技术与实际应用 &#x1f48e;1.引言&#x1f48e;1.1 什么是机器学习&#xff1f; &#x1f48e;2 机器学习的分类&#x1f48e;3 常用的机器学习算法&#x1f48e;3.1 线性回归&#xff08;Linear Regression&#xff09;&#x1…...

1-3.文本数据建模流程范例

文章最前&#xff1a; 我是Octopus&#xff0c;这个名字来源于我的中文名–章鱼&#xff1b;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github &#xff1b;这博客是记录我学习的点点滴滴&#xff0c;如果您对 Python、Java、AI、算法有兴趣&#xff0c;可以关注我的…...

【FFmpeg】avformat_alloc_output_context2函数

【FFmpeg】avformat_alloc_output_context2函数 1.avformat_alloc_output_context21.1 初始化AVFormatContext&#xff08;avformat_alloc_context&#xff09;1.2 格式猜测&#xff08;av_guess_format&#xff09;1.2.1 遍历可用的fmt&#xff08;av_muxer_iterate&#xff0…...

Flask 缓存和信号

Flask-Caching Flask-Caching 是 Flask 的一个扩展&#xff0c;它为 Flask 应用提供了缓存支持。缓存是一种优化技术&#xff0c;可以存储那些费时且不经常改变的运算结果&#xff0c;从而加快应用的响应速度。 一、初始化配置 安装 Flask-Caching 扩展&#xff1a; pip3 i…...

基于weixin小程序农场驿站系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;农场资讯管理&#xff0c;用户管理&#xff0c;卖家管理&#xff0c;用户分享管理&#xff0c;分享类型管理&#xff0c;商品信息管理&#xff0c;商品类型管理 开发系统&#xff1a;Windows 架构模式…...

JAVA将List转成Tree树形结构数据和深度优先遍历

引言&#xff1a; 在日常开发中&#xff0c;我们经常会遇到需要将数据库中返回的数据转成树形结构的数据返回&#xff0c;或者需要对转为树结构后的数据绑定层级关系再返回&#xff0c;比如需要统计当前节点下有多少个节点等&#xff0c;因此我们需要封装一个ListToTree的工具类…...

设计模式——开闭、单一职责及里氏替换原则

设计原则是指导软件设计和开发的一系列原则&#xff0c;它们帮助开发者创建出易于维护、扩展和理解的代码。以下是你提到的几个关键设计原则的简要说明&#xff1a; 开闭原则&#xff08;Open/Closed Principle, OCP&#xff09;&#xff1a; 开闭原则由Bertrand Meyer提出&am…...

代码随想录算法训练营第59天:动态[1]

代码随想录算法训练营第59天&#xff1a;动态 两个字符串的删除操作 力扣题目链接(opens new window) 给定两个单词 word1 和 word2&#xff0c;找到使得 word1 和 word2 相同所需的最小步数&#xff0c;每步可以删除任意一个字符串中的一个字符。 示例&#xff1a; 输入: …...

jvm性能监控常用工具

在java的/bin目录下有许多java自带的工具。 我们常用的有 基础工具 jar:创建和管理jar文件 java&#xff1a;java运行工具&#xff0c;用于运行class文件或jar文件 javac&#xff1a;java的编译器 javadoc&#xff1a;java的API文档生成工具 性能监控和故障处理 jps jstat…...

ISP IC/FPGA设计-第一部分-SC130GS摄像头分析-IIC通信(1)

1.摄像头模组 SC130GS通过一个引脚&#xff08;SPI_I2C_MODE&#xff09;选择使用IIC或SPI配置接口&#xff0c;通过查看摄像头模组的原理图&#xff0c;可知是使用IIC接口&#xff1b; 通过手册可知IIC设备地址通过一个引脚控制&#xff0c;查看摄像头模组的原理图&#xff…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件&#xff0c;其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时&#xff0c;价带电子受激发跃迁至导带&#xff0c;形成电子-空穴对&#xff0c;导致材料电导率显著提升。…...

深度解析云存储:概念、架构与应用实践

在数据爆炸式增长的时代&#xff0c;传统本地存储因容量限制、管理复杂等问题&#xff0c;已难以满足企业和个人的需求。云存储凭借灵活扩展、便捷访问等特性&#xff0c;成为数据存储领域的主流解决方案。从个人照片备份到企业核心数据管理&#xff0c;云存储正重塑数据存储与…...

linux设备重启后时间与网络时间不同步怎么解决?

linux设备重启后时间与网络时间不同步怎么解决&#xff1f; 设备只要一重启&#xff0c;时间又错了/偏了&#xff0c;明明刚刚对时还是对的&#xff01; 这在物联网、嵌入式开发环境特别常见&#xff0c;尤其是开发板、树莓派、rk3588 这类设备。 解决方法&#xff1a; 加硬件…...