当前位置: 首页 > news >正文

Pytorch实战(二)

文章目录

  • 前言
  • 一、LeNet5原理
    • 1.1LeNet5网络结构
    • 1.2LeNet网络参数
    • 1.3LeNet5网络总结
  • 二、AlexNext
    • 2.1AlexNet网络结构
    • 2.2AlexNet网络参数
    • 2.3Dropout操作
    • 2.4PCA图像增强
    • 2.5LRN正则化
    • 2.6AlexNet总结
  • 三、LeNet实战
    • 3.1LeNet5模型搭建
    • 3.2可视化数据
    • 3.3加载训练、验证数据集
    • 3.4模型训练
    • 3.5可视化训练结果
    • 3.6模型测试
  • 四、AlexNet实战


前言

  参考原视频:哔哩哔哩。

一、LeNet5原理

1.1LeNet5网络结构

在这里插入图片描述
  LeNet-5,其中, 5 5 5表示神经网络中带有参数的网络层数量为 5 5 5,如卷积层带有参数 ( w , b ) (w,b) (w,b),而池化层仅仅是一种操作,并不带有参数,而在LeNet-5中共含有两层卷积层、三层全连接层(有一层未标出)。
在这里插入图片描述

  • 卷积层和池化层:用于提取特征。
  • 全连接层:一般位于整个卷积神经网络的最后,负责将卷积输出的二维特征图转化成一维的一个向量(将特征空间映射到标记空间),由此实现了端到端的学习过程(即:输入一张图像或一段语音,输出一个向量或信息)。全连接层的每一个结点都与上一层的所有结点相连因而称之为全连接层。由于其全相连的特性,一般全连接层的参数也是最多的。

  事实上,不同的卷积核提取的特征并不相同,比如猫、狗、鸟都有眼睛,而如果只用局部特征的话不足以确定具体类别,此时就需要使用全连接层组合这些特征来最终确定是哪一个分类,即起到组合特征和分类器功能。

1.2LeNet网络参数

在这里插入图片描述

  • 输入层:输入大小为(28,28)、通道数为1的灰度图像。
  • 卷积层:卷积核尺寸为(6,5,5),即六个5x5大小的卷积核,填充为2,故输出特征图尺寸为(6,28,28)。
  • 池化层:使用平均池化,步幅为2,故输出特征图尺寸为(6,14,14)。
  • 卷积层:卷积核尺寸为(16,6,5,5),即16个6x5x5大小的卷积核,故输出特征图为(16,10,10).
  • 池化层:使用平均池化,步幅为2,输出特征图为(16,5,5)。
  • 全连接层:将所有特征图均展平为一维向量并进行拼接(通过调用nn.Flatten完成,输出为二维矩阵,每一行向量都是一张图片的展平形式),对应120个神经元。
  • 全连接层:将上一全连接层120个神经元映射为84个神经元。
  • 全连接层:将上一全连接层84个神经元映射为10个神经元。

  可知,卷积层往往会使通道数变大,而池化层往往会使特征图尺寸变小。

1.3LeNet5网络总结

在这里插入图片描述

二、AlexNext

在这里插入图片描述

2.1AlexNet网络结构

在这里插入图片描述

  AlexNet与LeNet设计理念相似,但有如下差异:

  • AlexNet比LeNet要深很多。
  • AlexNet由八层组成,包括五个卷积层,两个全连接隐藏层和一个全连接输出层。
  • AlexNet使用ReLUctant而非sigmoid作为激活函数。

2.2AlexNet网络参数

在这里插入图片描述
注意:

  • 图中的数据格式为(H,W,C,N),且最后全连接层的10是因为之后的案例输出为10个分类。
  • 网络参数过多时容易出现过拟合的情况(全连接层存在大量参数 w 、 b w、b wb),使用Dropout随机失活神经元。

2.3Dropout操作

  Dropout用于缓解卷积神经网络CNN过拟合而被提出的一种正则化方法,它确实能够有效缓解过拟合现象的发生,但是Dropout带来的缺点就是可能会减缓模型收敛的速度,因为每次迭代只有一部分参数更新,可能导致梯度下降变慢。
在这里插入图片描述
  其中,神经元的失活仅作用于一轮训练,在下一轮训练时又会随机选择神经元失活。每一轮都会有随机的神经元失活,以此降低缓解过拟合并提高模型训练速度。

2.4PCA图像增强

  图像增强是采用一系列技术去改善图像的视觉效果,或将图像转换成一种更适合于人或机器进行分析和处理的形式。例如采用一系列技术有选择地突出某些感兴趣的信息,同时抑制一些不需要的信息,提高图像的使用价值。
在这里插入图片描述

2.5LRN正则化

在这里插入图片描述

2.6AlexNet总结

在这里插入图片描述

三、LeNet实战

3.1LeNet5模型搭建

在这里插入图片描述

import torch
from torch import nn
from torchvision.datasets import FashionMNIST
from torchvision import transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.utils.data as Datadevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")class LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2),nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(in_features=16 * 5 * 5, out_features=120),nn.Linear(in_features=120, out_features=84),nn.Linear(in_features=84, out_features=10),)def forward(self, x):return self.model(x)myLeNet = LeNet().to(device)
print(summary(myLeNet,input_size=(1, 28, 28)))

在这里插入图片描述

注意,此处在卷积层后使用了sigmoid激活函数,事实上,卷积操作本质仍是一种线性操作,而若只有线性变换,那无论多少层神经元,都能简化层一层神经元,那神经网络只是简单多元线性回归而已,不能拟合更加复杂的函数。此时使用激活函数就可将神经网络非线性化,即提升神经网络的拟合能力,能拟合更复杂的函数。

3.2可视化数据

  加载模型,取出一个batch的数据及标签用于可视化:

train_data = FashionMNIST(root="./", train=True, transform=transforms.ToTensor(), download=True)	# FashionMNIST图像大小为28x28,无需调整
train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)
# 数据可视化
def show_img(train_loader):for step, (x, y) in enumerate(train_loader):if step > 0:  # 恒成立breakbatch_x = x.squeeze().numpy()batch_y = y.numpy()class_label = train_data.classes# 可视化fig = plt.figure(figsize=(8, 8))for i in range(64):ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])ax.imshow(batch_x[i], cmap=plt.cm.binary)ax.set_title(class_label[batch_y[i]])
show_img(train_loader)

在这里插入图片描述

3.3加载训练、验证数据集

  训练模型:

def train_val_process(train_data, batch_size=128):train_data, val_data = Data.random_split(train_data,lengths=[round(0.8 * len(train_data)), round(0.2 * len(train_data))])train_loader = Data.DataLoader(dataset=train_data,batch_size=batch_size,shuffle=True,num_workers=8)val_loader = Data.DataLoader(dataset=val_data,batch_size=batch_size,shuffle=True,num_workers=8)return train_loader, val_loadertrain_dataloader, val_dataloader = train_val_process(train_data)

3.4模型训练

import copy
import timeimport torch
from torch import nn
from torchvision.datasets import FashionMNIST
from torchvision import transforms
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch.utils.data as Data
def train(model, train_dataloader, val_dataloader, epochs=30, lr=0.001):device = torch.device("cuda" if torch.cuda.is_available() else "cpu")optimizer = torch.optim.Adam(model.parameters(), lr=lr)criterion = nn.CrossEntropyLoss()model = model.to(device)# 复制当前模型的参数best_model_params = copy.deepcopy(model.state_dict())# 最高准确率best_acc = 0.0# 训练集损失函数列表train_loss_list = []# 验证集损失函数列表val_loss_list = []# 训练集精度列表train_acc_list = []# 验证集精度列表val_acc_list = []# 记录当前时间since = time.time()for epoch in range(epochs):print("Epoch {}/{}".format(epoch + 1, epochs))print("-" * 10)# 当前轮次训练集的损失值train_loss = 0.0# 当前轮次训练集的精度train_acc = 0.0# 当前轮次验证集的损失值val_loss = 0.0# 当前轮次验证集的精度val_acc = 0.0# 训练集样本数量train_num = 0# 验证集样本数量val_num = 0# 按批次进行训练for step, (x, y) in enumerate(train_dataloader):  # 取出一批次的数据及标签x = x.to(device)y = y.to(device)# 设置模型为训练模式model.train()out = model(x)# 查找每一行中最大值对应的行标,即为对应标签pre_label = torch.argmax(out, dim=1)# 计算损失函数loss = criterion(out, y)optimizer.zero_grad()loss.backward()optimizer.step()# 累计损失函数,其中,loss.item()是一批次内每个样本的平均loss值(因为x是一批次样本),乘以x.size(0),即为该批次样本损失值的累加train_loss += loss.item() * x.size(0)# 累计精度(训练成功的样本数)train_acc += torch.sum(pre_label == y.data)# 当前用于训练的样本数量(对应dim=0)train_num += x.size(0)# 按批次进行验证for step, (x, y) in enumerate(val_dataloader):x = x.to(device)y = y.to(device)# 设置模型为验证模式model.eval()torch.no_grad()out = model(x)# 查找每一行中最大值对应的行标,即为对应标签pre_label = torch.argmax(out, dim=1)# 计算损失函数loss = criterion(out, y)# 累计损失函数val_loss += loss.item() * x.size(0)# 累计精度(验证成功的样本数)val_acc += torch.sum(pre_label == y.data)# 当前用于验证的样本数量val_num += x.size(0)# 计算该轮次训练集的损失值(train_loss是一批次样本损失值的累加,需要除以批次数量得到整个轮次的平均损失值)train_loss_list.append(train_loss / train_num)# 计算该轮次的精度(训练成功的总样本数/训练集样本数量)train_acc_list.append(train_acc.double().item() / train_num)# 计算该轮次验证集的损失值val_loss_list.append(val_loss / val_num)# 计算该轮次的精度(验证成功的总样本数/验证集样本数量)val_acc_list.append(val_acc.double().item() / val_num)# 打印训练、验证集损失值(保留四位小数)print("轮次{} 训练 Loss: {:.4f}, 训练 Acc: {:.4f}".format(epoch+1, train_loss_list[-1], train_acc_list[-1]))print("轮次{} 验证 Loss: {:.4f}, 验证 Acc: {:.4f}".format(epoch+1, val_loss_list[-1], val_acc_list[-1]))# 如果当前轮次验证集精度大于最高精度,则保存当前模型参数if val_acc_list[-1] > best_acc:# 保存当前最高准确度best_acc = val_acc_list[-1]# 保存当前模型参数best_model_params = copy.deepcopy(model.state_dict())print("保存当前模型参数,最高准确度: {:.4f}".format(best_acc))# 训练耗费时间time_use = time.time() - sinceprint("当前轮次耗时: {:.0f}m {:.0f}s".format(time_use // 60, time_use % 60))# 加载最高准确率下的模型参数,并保存模型torch.save(best_model_params, "LeNet5_best_model.pth")train_process = pd.DataFrame(data={'epoch': range(epochs),'train_loss_list': train_loss_list,'train_acc_list': train_acc_list,'val_loss_list': val_loss_list,'val_acc_list': val_acc_list})train_process.to_csv("LeNet5_train_process.csv", index=False)return train_process
train_process = train(myLeNet, train_dataloader, val_dataloader, epochs=30, lr=0.001)

查看LeNet5_train_process.csv
在这里插入图片描述

  注意,需要使用.double().item(),否则报错TypeError: can‘t convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor

3.5可视化训练结果

# 训练结果可视化
def train_process_visualization(train_process):plt.figure(figsize=(12, 4))plt.subplot(1, 2, 1)plt.plot(train_process['epoch'], train_process['train_loss_list'], 'ro-', label='train_loss')plt.plot(train_process['epoch'], train_process['val_loss_list'], 'bs-', label='val_loss')plt.legend()plt.xlabel('epoch')plt.ylabel('loss')plt.subplot(1, 2, 2)plt.plot(train_process['epoch'], train_process['train_acc_list'], 'ro-', label='train_acc')plt.plot(train_process['epoch'], train_process['val_acc_list'], 'bs-', label='val_acc')plt.legend()plt.xlabel('epoch')plt.ylabel('acc')plt.legend()plt.show()
train_process_visualization(train_process)

在这里插入图片描述

  左图为loss与训练轮次的对应图,右图为acc与训练轮次的对应图。可见,随着训练轮次的增加,损失值不断降低、精确度不断提高。

3.6模型测试

def test(model, test_dataloader, device):model.eval()test_acc = 0.0test_num = 0# 推理过程中只前向传播,不用反向传播更新参数,清空梯度节省内存torch.no_grad()for step, (x, y) in enumerate(test_dataloader):x = x.to(device)y = y.to(device)out = model(x)pre_label = torch.argmax(out, dim=1)test_acc += torch.sum(pre_label == y.data)test_num += x.size(0)# 测试集精度test_acc = test_acc.double().item() / test_numprint("测试集精度: {:.4f}".format(test_acc))model = LeNet()
model = model.to(device)
# 加载模型参数
model.load_state_dict(torch.load("LeNet5_best_model.pth"))
test_data = FashionMNIST(root="./", train=False, transform=transforms.ToTensor(), download=True)
test_dataloader = Data.DataLoader(dataset=test_data, batch_size=64, shuffle=True)
test(model, test_dataloader, device)

在这里插入图片描述

四、AlexNet实战

相关文章:

Pytorch实战(二)

文章目录 前言一、LeNet5原理1.1LeNet5网络结构1.2LeNet网络参数1.3LeNet5网络总结 二、AlexNext2.1AlexNet网络结构2.2AlexNet网络参数2.3Dropout操作2.4PCA图像增强2.5LRN正则化2.6AlexNet总结 三、LeNet实战3.1LeNet5模型搭建3.2可视化数据3.3加载训练、验证数据集3.4模型训…...

wordpress 付费主题modown分享,可实现资源付费

该主题下载地址 下载地址 简介 Modown是基于Erphpdown 会员下载插件开发的付费下载资源、付费下载源码、收费附件下载、付费阅读查看隐藏内容、团购下载的WordPress主题,一款针对收费付费下载资源/付费查看内容/付费阅读/付费视频/VIP会员免费下载查看/虚拟资源售…...

【INTEL(ALTERA)】NIOS II调试器中的重新启动按钮不起作用

目录 说明 解决方法 说明 在 Nios II SBT 调试Eclipse时,如果单击 重新启动 图标, 执行被暂停, 以下错误消息: Dont know how to run. Try "help target." 解决方法 终止程序,再次下载,并启…...

Hive On Spark语法

内层对象定义之特殊数据类型 Array DROP TABLE IF EXISTS test_table_datatype_array; CREATE TABLE test_table_datatype_array (ids array<INT> ) LOCATION test/test_table_datatype_array;SELECTnames,names[1]array(names[2],names[3])names[5],names[-1],array_c…...

利用 fail2ban 保护 SSH 服务器

利用 fail2ban 保护 SSH 服务器 一、关于 fail2ban1. 基本功能与特性2. 工作原理 二、安装与配置1. Debian/Ubuntu系统&#xff1a;2. CentOS/RHEL系统&#xff1a; 三、保护 SSH四、启动 fail2ban 服务五、测试和验证六、查看封禁的 IP 地址七、一些配置八、注意事项 作者&…...

在TkinterGUI界面显示WIFI网络摄像头(ESP32s3)视频画面

本实验结合了之前写过的两篇文章Python调用摄像头&#xff0c;实时显示视频在Tkinter界面以及ESP32 S3搭载OV2640摄像头释放热点&#xff08;AP&#xff09;工作模式–Arduino程序&#xff0c;当然如果手头有其他可以获得网络摄像头的URL即用于访问摄像头视频流的网络地址&…...

Yolov8训练时遇到报错SyntaxError: ‘image_weights‘ is not a valid YOLO argument.等问题解决方案

报错说明 line 308, in check_dict_alignmentraise SyntaxError(string CLI_HELP_MSG) from e SyntaxError: image_weights is not a valid YOLO argument. v5loader is not a valid YOLO argument. fl_gamma is not a valid YOLO argument. 解决方法 将训练文件中model.tr…...

javaweb(四)——过滤器与监听器

文章目录 过滤器Filter基本概念滤波器的分类: 时域和频域表示滤波器类型1. 低通滤波器(Low-Pass Filter)2. 高通滤波器(High-Pass Filter)3. 带通滤波器(Band-Pass Filter)4. 带阻滤波器(Band-Stop Filter) 滤波器参数1. 通带频率(Passband Frequency)2. 截止频率(Cutoff Frequ…...

冗余电源的应用,哪些工作站支持冗余电源

冗余电源是一种通过多组电源模块进行备份的技术手段&#xff0c;采用热备插拔式设计&#xff0c;使备用电源在主要电源失效时自动启动&#xff0c;从而确保电源供应不间断。 冗余电源通常应用于对电力要求极高的关键设备和系统&#xff0c;如医疗设备、核电站、数据中心等。在…...

[信号与系统]IIR滤波器与FIR滤波器相位延迟定量的推导。

IIR滤波器与FIR滤波器最大的不同&#xff1a;相位延迟 IIR滤波器相位延迟分析 相位响应和延迟 这里讨论一下理想延迟系统的相位延迟。 对于一个给定的系统频率响应 H ( e j w ) H(e^{jw}) H(ejw)可以表示为 H ( e j w ) ∣ H ( e j w ) ∣ e Φ ( w ) H(e^{jw}) |H(e^{jw…...

Python海量数据处理脚本大集合:pyWhat

pyWhat&#xff1a;精简海联数据&#xff0c;直达数据弱点要害- 精选真开源&#xff0c;释放新价值。 概览 pyWhat是Github社区上一款比较实用的开源Python脚本工具。它能够快速提取信息中的 IP 地址、邮箱、信用卡、数字货币钱包地址、YouTube 视频等内容。当你遇到了一串莫名…...

postgresql搭建

搭建postgresql-11.3&#xff0c;和客户端工具 1&#xff0c;准备对应的包&#xff0c;右键直接下一步安装完即可&#xff0c; 将postgresql设置为本地服务&#xff0c;方便启动&#xff0c; 2&#xff0c;用对应客户端软件连接&#xff0c;新建一个数据库controlDB 新建用户…...

Web 品质标准

Web 品质标准 引言 随着互联网的快速发展,Web应用已经渗透到我们生活的方方面面。为了确保Web应用的质量,提高用户体验,Web品质标准应运而生。这些标准涵盖了多个方面,包括性能、安全性、可访问性、用户体验等。本文将详细介绍这些标准,并探讨它们在实际开发中的应用。 …...

深入理解PyTorch:原理与使用指南

文章目录 引言一、PyTorch的原理1. 动态计算图2. 自动微分3. 张量计算4. 高效的并行计算 二、PyTorch的使用1. 环境配置2. 加载数据3. 构建模型4. 训练模型5. 验证和测试模型 三、PyTorch的安装与配置四、PyTorch的使用示例总结 引言 在深度学习和机器学习的广阔领域中&#x…...

【MySQL事务】深刻理解事务隔离以及MVCC

文章目录 什么叫事务事务的提交方式常见的事务操作方式事务的开始与回滚总结 事务的隔离设置隔离级别解释脏读解释幻读解释不可重复读为什么可重复读不能解决幻读问题&#xff1f;总结 数据库并发的场景MVCC隐藏列字段undo日志Read view RR和RC的本质区别总结 什么叫事务 在My…...

关于Mac mini 10G网口的问题

问题: 购入一个10G网口的Mac mini M2&#xff0c;将其和自己的2.5G交换机连接&#xff0c;使用共享屏幕进行远程操作的过程中出现了频率极高的卡顿&#xff0c;几乎是几秒钟卡一下&#xff0c;使用ping进行测试发现卡的时候就ping不通了。测试使用Mac mini的无线网和雷电转2.5G…...

计算机网络-第4章 网络层

4.1网络层的几个重要概念 4.1.1网络层提供的两种服务 电信网面向连接通信方式&#xff0c;虚电路VC。 互联网设计思路&#xff1a;网络层要设计得尽量简单&#xff0c;向其上层只提供简单灵活的&#xff0c;尽最大努力交付的数据报服务。 网络层不提供服务质量的承诺&#…...

pytorch跑手写体实验

目录 1、环境条件 2、代码实现 3、总结 1、环境条件 pycharm编译器pytorch依赖matplotlib依赖numpy依赖等等 2、代码实现 import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matpl…...

利用Java的`java.util.concurrent`包优化多线程性能

利用Java的java.util.concurrent包优化多线程性能 一、引言 在Java的多线程编程中&#xff0c;性能优化是一个永恒的话题。随着多核CPU的普及和计算任务的日益复杂&#xff0c;多线程编程已经成为提高应用程序性能的重要手段。然而&#xff0c;多线程编程也带来了一系列的问题…...

软件著作权申请:开发者的重要保障与助力

一、引言 随着信息技术的飞速发展&#xff0c;软件产业已成为推动经济增长的重要动力。然而&#xff0c;在软件开发过程中&#xff0c;保护创作者的权益、防止抄袭和侵权行为显得尤为重要。软件著作权作为保护软件开发者权益的重要法律工具&#xff0c;其申请和登记流程对于软…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...